CE= %1
TECHNICAL REPORT OF IEICE.

BN EFEREEER
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

DP ~ v F o 7 & AT E
JYARNT7— WHE 3 K

T IUNKRZEREBE A FERE T 812-8581 & [T B X 4 IR 6-10-1
T LM RFZRFRE S AT AEREVAAIZERE T 819 0395 &R 7E X ok 744
E-mail: {{malon,suzuki}@math.kyushu-u.ac.jp, ftuchida@is.kyushu-u.ac.jp

4=l

F—7J—F OCR. ®7 A T—var, BT, HXGEFRE. DP~yF o7

Separation of Touching Characters Using DP Matching

Christopher MALONT, Seiichi UCHIDA, and Masakazu SUZUKI'

1 Faculty of Mathematics, Kyushu University
Hakozaki 6-10-1, Higashi-ku, Fukuoka-shi, 812 8581 Japan
11 Faculty of Information Science and Electrical Engineering, Kyushu University
Motooka 744, Nishi-ku, Fukuoka-shi, 819-0395 Japan
E-mail: {{malon,suzuki}@math.kyushu-u.ac.jp, {tuchida@is.kyushu-u.ac.jp

Abstract Ideally, an OCR system would partition the set of connected black components on a page into subsets
representing individual characters. However, this approach is inadequate if some component partially belongs to
several touching characters. We present a DP matching-based method that cuts such a component apart, given a
hypothetical classification for the leftmost part. Our method produces better quality cuts than well-known meth-
ods, particularly in mathematical expressions, where characters are often slanted and may touch in widely varying
configurations. A good cut allows single-character recognition techniques to be applied to the cut part and the

residual image, in order to judge whether the hypothetical classification was correct.

Key words
DP matching

1. Introduction

Single character recognition methods fundamentally rely
upon segmentation into groups of connected components,
representing individual characters. In practice, characters
may be broken, or neighboring characters may touch, mak-
ing the input to the single-character recognizer be more or
less than a single character.

Printed mathematical documents are distinguished from
typical literature by the variety of similar symbols, the need
to distinguish identical letters appearing in different styles,
the lack of a fixed vocabulary for mathematical expressions,
and the two-dimensional arrangement of symbols on a page.
In an early version of InftyReader, a mathematical OCR pro-
gram available free of charge from the Suzuki Laboratory at

Kyushu University [1], touching symbols accounted for 60%

Optical character recognition, segmentation, touching characters, mathematical symbol recognition,

of character misrecognitions [2]. Some typical examples of
touching patterns are shown in Figure 1.

Many researchers have recognized the importance of char-
acter segmentation; a survey appears in [3]. The goal of many
of these algorithms is to cut the image in a straight vertical
line from top to bottom, often with the feedback of a clas-
sifier to choose among possible lines. This process may be
repeated recursively, as a “recursive segmentation and classi-
fication” process, until each character in the touching group
is recognized [4]. Italic letters have been treated by similar
approaches, after determining at the pitch angle and correct-
ing for it [5].

The examples in Figure 1, however, show the inadequacy
of these approaches for OCR of mathematical documents. In
the images of ‘S?’; ‘e®’, and ‘)’, the letters appear in differ-

ent sizes, at different baselines. The images ‘w"’, ‘f(’, ‘S?’,

— 1 —

wo) & B
s N A f

Fig.1 Examples of touching characters in mathematical docu-

ments.

and “*)’, ‘f)’, and ‘ft’ should not be cut vertically, by a seg-
ment of any length. No fully extended line in any direction
could cut the ‘f)’, the ‘ft’, or the ‘*)’ into clean specimens
of the individual characters.

A couple of these authors have addressed segmentation of
touching characters in mathematical expressions, in particu-
lar. A method of Okamoto et al[6], searches for valleys in the
binary image convolved with the Gaussian kernel, and follows
them to allow cuts in many directions. The method of Lee
and Lee [7] may be closest to ours. They introduce “front
features,” which represent the first part of a letter’s contour
that is expected after an anchor point. Without guessing
the initial letter, they attempt to match these features, for
all reference images, to the touching image. DP matching is
attempted against all reference images in parallel, with pos-
sible matches abandoned as their scores become too high.
Our notions of reduced frame and variable-dimensional pe-
ripheral features, described below, take the front-matching
idea of “front features” and make it less sensitive. Their sys-
tem was tested on only 50 mathematical expressions, and the
performance of the touching-character segmentation was not
separately analyzed.

A seemingly effective algorithm is reported by [8], allow-
ing cuts horizontally, vertically, and in both diagonal direc-
tions (though each of these possibilities must be considered
separately). The segmentation is purely geometric, without
initial recognition results, and proceeds to try various al-
ternatives until a good recognition result is achieved. They
utilize an unusual and powerful feature definition. The ex-
amples they picture are all breakable by lines; we are unsure
how their method would perform on the characters of Figure
1, which must be broken not by a line but by a line segment.

We propose a fundamentally different strategy, making
few assumptions about the geometry of touching characters.
Rather than searching for unusual values of geometric fea-
tures (extrema of vertical projections, minima of the Tsu-
jimoto metric, or crossing counts), we begin by taking the
entire image as input to a classifier that attempts to recog-
nize the leftmost character. Whether the letter ‘a’ appears
alone, or whether it is part of a group of touching letters such
as ‘as’ or ‘at,’” this classifier is designed to return the result

‘a.” We describe the construction of this classifier in Section

After forming a hypothesis for the leftmost character, we
cut the image, so that the remaining characters may be rec-
ognized. Performing this segmentation is the task of our DP
cutting algorithm. DP cutting applies dynamic programming
(DP) methods to separate a touching-character image (the
sample image), using a prototype (the reference image) for
the character believed to be on the left. It uses the geome-
try of the sample image to determine possible line segments
(in many directions) where a cut is likely. Then, it decides
among these possibilities by solving a DP matching problem
that compares the alignment of the reference character’s con-
tour with the contour formed by breaking the sample char-
acter along a cut. We give details of this step in Section
3.

Thus, although our algorithm might be considered as “re-
cursive segmentation and classification,” it reverses the order
of segmentation and classification, compared to the methods
of previous such algorithms. The overall strategy may be

summarized as follows:

For each connected component on the page:

(1) Classify the character using a traditional
single-character recognizer C.

(a) If the score is good, accept the classifica-
tion.

(b) Otherwise, suppose it to be a touching
character.

i. Use the touching-character classifier to pro-

duce a list L of possible results for the left character.

ii. For each candidate x in the list L:

A. Apply DP cutting to find the best segmen-
tation of the sample image, assuming the left char-
acter to be x.

B. Cutting at the proposed segmentation, clas-
sify the left part using the same classifier C' as above,
calling the result y.

C. Ify =z, accept x as the left character, and
return to step 1 to recognize the residual image.

D. Otherwise, continue with the next candi-

date in L.

Although we refer to the “left” and the “right” character,
our notion of “leftmost” is significantly more general than in
common algorithms, which suppose that one character falls
completely to the left of another. Broken characters should
also be treated in Step 1 (b), but describing that method is
beyond the scope of this paper.

2. The touching-character classifier

The touching classifier aims to recognize the “leftmost”

— 2 —

:(unkim(lgygy
dalch cn|—4 _4

Fig.2 Examples of cropping an image to its reduced frame.

character in an image consisting of several touching charac-
ters. The image may consist of more than one connected
component. If so, the component with the longest perimeter
(called the target component) is extracted, and the classifier
attempts to break it into two pieces. For any break line, the
remaining components are assigned either to the image that
was broken off, or to the residual image, depending on which
side of the line their centroids fall on.

First, the classifier finds an anchor point on the target
point. This anchor point is the closest vertex to the lower
left corner of the bounding box. If more than one vertex is
equal in distance from the corner, the vertex farthest to the
left is chosen. We use this definition of anchor, rather than
searching for the leftmost point, because many letters and
symbols have straight, vertical contours near the left side,
making the anchor’s position unstable.

From this point, a portion of the image called the reduced
frame is found. The reduced frame is a strip bounded on
The left

side of the reduced frame coincides with the left side of the

three sides, extending infinitely far to the right.

bounding box. The top side and bottom side are defined by
looking for the next y maximum, proceeding clockwise from
the anchor point, and the next y minimum, proceeding coun-
terclockwise from the anchor point, that satisfy the following
three conditions, for a preset value k:

(1) Tt must be reached when z is increasing.

(2) It must be at a more extreme y-value than any
point encountered previously while traveling from the anchor
point.

(3) The local extremum must be stable (no more ex-
treme point is encountered in the next k points along the
contour).

Some examples of images and their reduced frames are
shown in Figure 2. The point of the definition is that the re-
duced frame of a single letter A should typically be the same
as the reduced frame for a group of symbols AB in which
A is to the farthest left. It matters primarily that A begins
farthest to the left; A need not fall entirely to the left of B
in the touching image.

The classifier that we apply to the touching image before
DP cutting uses a vector of peripheral features, captured in
the reduced frame. The dimension of the vector may vary.

Fix a grid size m. The reduced frame is divided into m

equally sized horizontal strips. The number of color changes
(black/white plus white/black) along each horizontal scan-
line is counted. Within the ith strip, let n; be the mode
value of the color change counts. On a scanline with n;
color changes, let z1,x2,...,2,, be their horizontal posi-
tions, measured from the left of the reduced frame. These
values give run-length encodings of the scanlines. Let h be
the height of the reduced frame. (The reduced frame has

T

infinite width.) Average the vectors (51, £2,..., —%) corre-

sponding to each of the scanlines of the strip with exactly n;

color changes. The resulting vector is the ith contribution
U; to the peripheral feature vector. The complete peripheral
feature vector is the concatenation (v1,...,vm) of these fea-
ture vectors. Its dimension is ny +ng + -+ + ny. We call
the m-tuple (n, ..., nm) the dimension profile of the feature
vector.

The matching relation between two peripheral feature vec-
tors 7 = (v1,...,vm) and 0/ = (v_{, ..., vl involves a choice
of threshold vector €, with the same dimension profile as v'.
We say that the vectors match within €, and write ¥ <z v_7, if
the following conditions are all satisfied:

(1) Dimension compatibility: For each i, 1 < i < m,
we have n; < nj.

(2) Subprofile matching: Write v; = (%i,1,- .., Tin;)
and 12 = (@i 1,-- xin;) For each 4, and each j, 1 < j < n,
we have

24,5 — x5 5| < €05

(3) Boundary condition: For each i, we have

/ .
Tin; — Tin, > —€in,-

Typically, if an image XY is formed by adjoining a symbol
Y touching the image X on the right, we expect the reduced
frame of XY to match that of X, even if Y protrudes above
or below the bounding box of X. Furthermore, we expect
the feature vectors @ of X and v/ of XY to satisfy 7 < v'.
(Refer again to the examples in Figure 2.) The “subprofile
matching” in this situation occurs with strict equality; an
inequality occurs in the “boundary condition” because the
last run of black pixels has become longer.

In practice, we will not be comparing an image to its own
left portion, but to idealized “reference images.” From sin-
gle character images in the training database, we record the
dimension profiles (possibly several) with which each symbol
appears. The (symbol, dimension profile) pairs are called re-
fined classes. Within the training samples of each refined
class A, we measure the median feature vector m’s and the
standard deviation vector o 4.

This preparation allows us to construct a touching char-

acter classifier that assigns several candidate results to a

— 3 —

touching image. We choose each threshold vector €4 to be
a constant multiple of 04. Given an input sample with fea-
ture vector ¥, the classifier returns all classes A such that
ma <

~

o 7.
3. DP Cutting

The DP cutting algorithm is applied to a touching image
against a reference image for each candidate refined class. In
this experiment, these reference images are simply the train-
ing images with feature vectors closest to the medians. The
touching image and reference images are each represented by
polygonal appproximations. The vertices in each should be
sampled at equally spaced intervals, after scaling both im-
ages to the same reduced frame height. The DP matching
problem we construct attempts to align the chain code [9] of
the reference image to the chain code of the touching image,
broken by a cut. The cut emerges as part of the output of
the DP matching problem.

A traditional DP matching problem can be visualized by
a grid in which one axis represents the first sequence and
another axis represents the second. A DP cutting problem
can be visualized by two such grids—a “pre-cut” grid and a
“post-cut” grid, with some edges joining the two grids.

A node of the DP cutting problem is a triple (4, j, k), where
i is the index of a vertex of the reference image, numbered
from the anchor point, j is the index of a vertex of the
touching image, and k is 0 or 1 (indicating, respectively,
the pre-cut or post-cut grid). Each node (i, j, k) has parents
(i—2,7—1,k), (i—1,7—1,k), and (: — 1,5 — 2, k). Addition-
ally, some nodes on the post-cut grid (7, j, 1) have parents of
the form (7, 7’,0), indicating a cut from vertex j' to j. At any
node, the alignment cost is min(|r(¢) —s(j)|, 8 — |r(7) — s(j)|),
where (i) and s(j) are the chain codes at the corresponding
vertices. The problem is to find the least expensive path from
(0,0,0) to (m —1,n—1,1), where m and n are the numbers
of vertices in the two images. If (i',5’,0) is the predecessor
of (4,7,1) in this path, then the solution determines the cut
(7,)-

The edges between the two grids are determined by the
potential cuts. A pair of indices (5,) of the contour of the
touching image is a potential cut if:

(1) Non-triviality: We have j' + 1 < j.

(2) Local minimum: Let d(k, k') denote the distance
between the vertices at index k and index k’. We have
A = 1,5) 2 d(7',5), dG +1,5) > d(73), A i — 1) 2
d(j',§), and d(j,j + 1) > d(j',).

(3) Interior constraint: The line segment joining the

vertices at 5 and j does not exit the polygon.

For each potential cut (j',), there are edges from the pre-

cut grid at (7,5’,0) to the post-cut grid at (3,7, 1), for every

2.
4. Results

The touching characters we test are the 4,246 groups of
two or more touching characters found in InftyCDB-1 [10].
They constitute 8,569 characters altogether.

To train the classifier, we use the 188,752 images of
clean (non-touching, mnon-broken) single characters from
InftyCDB-3-A [11], and measure dimension profiles and pe-
ripheral feature vectors using m = 6 horizontal strips. Re-
jecting classes with fewer than ten samples, 1662 refined
classes are created from 363 different symbols appearing in
InftyCDB-3-A. Within each refined class A, we measure the
median m’a and standard deviation o4 of the peripheral fea-
ture vectors.

The classifier assigns a sample with peripheral feature vec-
tor & to refined class A if ma Sey &, where €4 = 30a.
This condition may be satisfied for many classes A, each of
which becomes a candidate recognition result; on average,
there are 70 candidates. The correct result appears among
these candidates for 83.1% of the samples in the test data
(the acceptance rate). By comparison, the classifier yields a
88.2% acceptance rate on the 70,637 non-touching charac-
ters that appear in the InftyCDB-3-B database (described
in [11]). Thus, our classifier is almost as likely to recognize
the left character when it is touching as when it is alone.

In the strategy described in Section 1, our method would
apply DP cutting against each of the candidate classes, and
choose a final result based on whether a single-character clas-
sifier would recognize the cut result as the same candidate.
For this experiment, we examine only the results of DP cut-
ting against the true candidate. Particularly, we reject prob-
lems where the correct result does not appear in the can-
didate list. Sixteen randomly chosen results are shown in
Figure 3.

To a human, each of the cuts appears satisfactory, except
in examples 3 and 15. The problem in example 3 occurs be-
fore the DP cutting algorithm begins. We need the dot of the
‘i’ to be the reference image, and not the base of the ‘i,” but
our implementation assumes that if a reference character has
multiple components, the biggest one (and only the biggest
one) will be joined to another character. Example 15 fails
because our implementation neglects to resample the ver-
tices in the manner suggested in Section 3. Because the DP
matching problem we have constructed allows the number of
vertices in the contour outside of the jump to be stretched
only by a factor of two, no reasonable cut can be produced
in this example.

Though it is not apparent from Figure 3, the DP cutting al-

— 4 —

Polygon to cut | Reference | Solution

d==Nlaih

it o oV R EYE IS IR]

-4
=

=" ﬁﬁ%m%@mﬁ%%ﬁ%%ﬁ/j = | =

20 FEE e |NS=[ESZ e (= =

. 111

J
. Il
9.) L
0 AS
11. [
12. ﬁl
s EX

]
. Il
15. PR
16. j

Fig.3 Sixteen randomly chosen DP cutting problems, and their
solutions.
Input | Polygon to cut | Reference | Solution

n.

Fig.4 The jumping problem.

gorithm sometimes fails to produce clean results, even when
the correct polygons in the touching and reference images are
targeted and the run lengths are properly normalized. These
problems may be caused by poor reference image selection,
or by a phenomenon we call the jumping problem.

The jumping problem occurs when the jump segment itself
is so long that it should be aligned to part of the reference
image. The DP cutting algorithm never allows reference ver-
tices to be skipped, so such an alignment is impossible. Fig-

ure 4 shows an example in which italic » and v are stuck to-

gether. The touching image should be cut vertically, along a
segment representing the right side of the tip of the ‘r.” How-
ever, there is no progress along the reference image when this
vertical segment is traversed. If the cut ends before the curve
on the top of the ‘r,” there will be a penalty, because the next
node on the reference image would be upwards but the next
node on the touching image would be leftward. Thus, the
algorithm chooses a cut that skips the top curve of ‘r,” and

ends just before the vertical segment approaching the peak.
5. Summary

We have introduced two new algorithms in this paper.
First, we have given a method that hypothesizes several
recognition results for the leftmost character in a group of
touching characters. Second, we have given a method for seg-
menting such a group into two pieces, when the ideal contour
of the first piece is known. Compared to previous methods,
our approach allows more kinds of interfaces between the
characters and more positional relationships. At the cost of
having to form a hypothesis for the recognition result, we
gain freedom from strong geometric assumptions.

In future work, we intend to use the output of the DP
cutting algorithm as input for a single-character recognizer.
This will complete the implementation of the strategy de-
scribed in Section 1 and allow us to quantitatively evaluate

the accuracy of the DP cutting method.
Acknowledgments

The first author acknowledges the support of the Kyushu
University Department of Mathematics 21st Century Center

Of Excellence program.

X i)

[1] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kana-
hori, “INFTY: an integrated OCR system for mathemati-
cal documents,” DocEng '03: Proceedings of the 2003 ACM
symposium on Document engineering, New York, NY, USA,
pp-95 104, ACM Press, 2003.

[2] A. Nomura, K. Michishita, S. Uchida, and M. Suzuki, “De-
tection and segmentation of touching characters in mathe-
matical expressions,” Proceedings of the Seventh Interna-
tional Conference on Document Analysis and Recognition,
Edinburgh, pp.126-130, IEEE Computer Society Press,
2003.

[3] Y. Lu, “Machine printed character segmentation: an
overview,” Pattern Recognition, vol.28, no.1l, pp.68-80,
1995.

[4] R. Casey and G. Nagy, “Recursive segmentation and clas-
sification of composite patterns,” Proceedings of the Sixth
International Conference on Pattern Recognition, pp.1023—
1026, 1982.

[6] S. Tsujimoto and H. Asada, “Major components of a com-
plete text reading system,” in Document image analysis,
pp-298-314, IEEE Computer Society Press, Los Alamitos,
CA, USA, 1995.

[6] M. Okamoto, S. Sakaguchi, and T. Suzuki, “Segmentation
of touching characters in formulas,” DAS ’98: Selected Pa-

— 5 —

[7]

(8]

[9]

(10]

(11]

pers from the Third IAPR Workshop on Document Analysis
Systems, London, UK, pp.151-156, Springer-Verlag, 1999.

H. Lee and M. Lee, “Understanding mathematical expres-
sions using procedure-oriented transformation,” Pattern
Recognition, vol.27, no.3, pp.447-457, 1994.

U. Garain and B.B. Chaudhuri, “Segmentation of touch-
ing symbols for ocr of printed mathematical expressions:
An approach based on multifactorial analysis,” ICDAR ’05:
Proceedings of the Eighth International Conference on Doc-
ument Analysis and Recognition, Washington, DC, USA,
pp.177-181, IEEE Computer Society, 2005.

S. Mori, H. Nishida, and H. Yamada, Optical Character
Recognition, John Wiley & Sons, 1999.

M. Suzuki, S. Uchida, and A. Nomura, “A ground-truthed
mathematical character and symbol image database,” IC-
DAR ’05: Proceedings of the Eighth International Confer-
ence on Document Analysis and Recognition (ICDAR’05),
Washington, DC, USA, pp.675-679, IEEE Computer Soci-
ety, 2005.

M. Suzuki, C. Malon, and S. Uchida, “Databases of math-
ematical documents,” Research Reports on Information
Science and Electrical Engineering of Kyushu University,
vol.12, no.1, pp.1-8, 2007.

