
Slot-Filling by Substring Extraction at TAC KBP 2012 (Team Papelo)

Christopher Malon
Dept. of Machine Learning
NEC Laboratories America
malon@nec-labs.com

Bing Bai
Dept. of Machine Learning
NEC Laboratories America
bbai@nec-labs.com

Kazi Saidul Hasan
HLT Research Institute

The University of Texas at Dallas
saidul@hlt.utdallas.edu

Abstract

Motivated by the general question-answering
problem, we implement a system for slot-
filling based on substring extraction. Rather
than restricting to classification of named en-
tity pairs, our system learns to extract arbitrary
substrings of text as predicted slot fills. We
build two classifiers of this form–one logis-
tic regression classifier using a typical sparse
feature vector of syntactic and semantic fea-
tures (submitted), and a convolutional neural
network classifier using dense features learned
through a language model (not submitted). In
either case, the pipeline is completed with a
coreference system and an answer validation
module, which rejects answers in improper
form for a particular slot. This is our first TAC
submission, and our performance was chal-
lenged by the distant supervision assumption
and the differences between Wikipedia and
newswire data.

1 Introduction

Slot-filling is an important NLP task for Knowledge
Base Population, but our interest is in using slot-
filling as a step towards a question answering sys-
tem. With this goal in mind, our approach differs
slightly from previous work. One crucial distinction
is that a question-answering system should be able
to answer any question about a reading, not just a
finite set of pre-determined questions (slots). An-
swering arbitrary questions, of course, relies on in-
terpreting a natural language question, which we do
not address here, but it also relies on extracting ar-
bitrary answers from a reading or a corpus. For ex-

ample, “why” questions will never be answered by a
single named entity.

Like most other teams, we still train separate clas-
sifiers for every slot. However, our classifiers learn
to extract arbitrary substrings of text, not just named
entities or fixed patterns. The classifier considers a
representation of the entire parse tree of a sentence
at once, in addition to a special tag for each leaf,
which tells it whether any named entity is consid-
ered coreferent to the query entity. Although some
heuristics are used to clean up classifier output, the
classifier itself uses very general syntactic features,
which don’t favor one type of lexical entity over an-
other.

This approach is not mature, and our performance
probably suffered from the missing heuristics and
our relatively cautious approach to distant supervi-
sion, which we discuss later. However, we are en-
couraged by strong performance if the distant su-
pervision requirement is relaxed, for example if the
classifier is tested on Wikipedia data after training it
on the same kind of data. Although some kind of
NLP pipeline is inevitable in the slot-filling task, we
hope that this work contributes towards a method to
slot-filling that better extends to general QA.

2 Related work

NEC has developed an approach to NLP problems
based upon convolutional neural networks (CNN),
known as the Semantic Extraction Neural Network
Architecture (SENNA) (Collobert et al., 2011). Al-
though CNN may be more widely known for two-
dimensional image classification problems, CNN in
one dimension effectively learn features from a slid-



ing window across tokens of text, where each token
is represented by a dense feature vector in a learned
lookup table that models the words in the language.
Such a language model was proposed in (Bengio
and Ducharme, 2001). SENNA has achieved state-
of-the-art performance in part-of-speech tagging,
named entity recognition, and chunking, and com-
petitive performance in semantic role labeling and
parsing. Moreover, at classification time, SENNA
is 200 times faster at POS tagging than state-of-the-
art systems such as (Shen et al., 2007) and a hundred
times faster at semantic role labeling (Koomen et al.,
2005).

We were anxious to extend SENNA to handle
even higher-level semantic tasks. Others have taken
up sentiment analysis (Socher et al., 2011b) and
paraphrase detection (Socher et al., 2011a) using
recursive neural networks, and word sense disam-
biguation (Bordes et al., 2012) using energy-based
models of learned embeddings. Slot-filling could
be a prime semantic task for the neural network ap-
proach, although its dependence on many other tasks
in an NLP pipeline (such as retrieval) makes it a
less pure problem. One contribution of this paper
is to define a classifier for slot-filling guided by the
approach of SENNA. Particularly, it represents the
entire parse tree of a sentence as features for label-
ing each token. Long-range syntactic relationships
were at first invisible to convolutional neural net-
works, which never saw beyond a sliding window
of words that tracked the current word for tagging.
When SENNA was extended for semantic role label-
ing, far away tokens contributed to classification via
a feature that summarizes all the words in the sen-
tences, taken with their relative distances from the
current word. Inspired by this approach, we craft
features that summarize an entire parse tree.

One novelty of the CNN approach is that it uses
only dense feature vectors to encode linguistic in-
formation. Our baseline approach, which is the one
we ultimately submitted, uses very similar features
in a more traditional sparse setting. As in (Surdeanu
et al., 2011), we train logistic regression classifiers
based on a sparse, binary feature vector indicating
the tokens and patterns that occur, forgoing the lan-
guage model.

3 Pipeline

Although we rely mainly on a trained classifier to
extract slot fills, some other modules are needed to
prepare the input and clean up the output of this clas-
sifier.

3.1 Document Retrieval

Each query is taken literally, and used in up to three
forms as a query for a standard Lucene server (the
included Demo server, with standard analyzer and
default scorer), which has indexed the documents
in the official contest corpus. In the first form, the
query is quoted. In the second, each token of the
query is taken as a required term. In the third, the
query is passed without quoting.

Assuming the first (strictest) query returns at least
fifty documents, its results are processed in the se-
quel. Otherwise, the second, somewhat weaker,
form is tried. If at least fifty documents are returned,
those are processed. If not, the results of the third
query are processed.

Maximally, the top 1000 retrieved documents are
processed. If many matches exist, ones with lower
TF-IDF matches against the query may be truncated.

3.2 Tokenization and Parsing

We use Stanford’s “CoreNLP” system (Lee et al.,
2011), (Raghunathan et al., 2010) to perform the
lowest level tasks of sentence splitting and tokeniza-
tion, but not parsing. For higher level syntactic anal-
ysis (part-of-speech tagging, named entity recogni-
tion, and parsing), we use SENNA.

We run the coreference analyzer included in Stan-
ford CoreNLP to extract mentions and form coref-
erence chains. This analyzer achieved state-of-the-
art performance on CoNLL tasks (Raghunathan et
al., 2010). We have modified the code to operate
on the result of SENNA’s faster parser, rather than
Stanford’s own parser.

Before these steps, newsgroup documents are fil-
tered from the retrieved results, as they are likely
to present challenges for later modules. Particu-
larly, ASCII art in a signature could result in sen-
tences with huge numbers of tokens but no mean-
ingful words, resulting in long, fruitless searches for
Stanford’s coreference module.



3.3 Special Mention

For a given query, it is natural to find sentences that
do not mention the query entity exactly and yet pro-
vide answers for specific slots. Let us use the fol-
lowing example for illustration.

“Barack Obama is the 44th and cur-
rent President of the United States. He
is the first African American to hold the
office. President Obama is a graduate
of Columbia University and Harvard Law
School.”

Given the query “Barack Obama”, we have an-
swers to slots “per:origin” (African American) and
“per:schools attended” (Columbia University and
Harvard Law School) in the 2nd and 3rd sentences,
respectively. However, the query (i.e., “Barack
Obama”) does not occur exactly in either of these
two sentences. To extract answers from such sen-
tences, it will be useful if the classifier has a clue
that both “He” and “President Obama” refer to the
query “Barack Obama”.

Motivated by this, we run Stanford’s co-reference
resolver on every supporting document for a given
query and extract mention chains from those docu-
ments. Ideally, for the text above, “Barack Obama”
(1st sentence), “He” (2nd), and “President Obama”
(3rd) will be part of the same chain. Once we have
all such mention chains from a document, we find a
chain that refers to the query entity. Heuristically, a
chain refers to the query entity if it has at least one
mention that is either an exact match, or a substring,
or an acronym of the query string. We then tag each
word in the document. We tag the words in the men-
tions that refer to the query entity using IBES format
(e.g., B-ENTITY, I-ENTITY etc). We assign an ’O’
tag to each of the remaining words. Finally, we use
this tag as a feature for each word.

3.4 Classification

At this point, classifiers are run on the preprocessed
documents. The query is no longer needed, as its
role is served by the special mention tagging.

One classifier is needed per slot. The classifier
gives a prediction for every word, indicating whether
the word should be extracted to fill the slot or not.

The classifiers use features of the given word, rela-
tive to features of the other words in the same sen-
tence, as tagged by the previous modules. Details
of the features and the classifers appear in later sec-
tions.

3.5 Answer Validation
We apply a post-processing step to validate the
slot values predicted by the classifier. Since
many of the 42 pre-defined slots are associated
with values of specific types (e.g., “per:spouse”,
“org:top members employees” are always names of
persons), it makes sense to check if a predicted slot
value refers to an entity of the type the slot is asso-
ciated with. Consequently, we apply a set of rules to
validate classifier responses and try to improve our
system’s precision in this process.

Once the classifier predicts a list of candidate to-
ken sequences as potential responses for a particular
slot, we validate each of these token sequences in
our post-processing module. First, the module lists
the entity type(s) associated with the slot. For in-
stance, for “org:alternate names”, the only accept-
able answers are organization names. A slot may be
associated with several entity types as well. For ex-
ample, ”org:shareholders” can have both person and
organization names as potential answers.

Given the list of entity types for a slot, we then
check each token sequence (predicted by the classi-
fier) and determine if it matches (or overlaps with)
an entity sequence of the desired type(s) in the text.
To accomplish this, we use SENNA’s named en-
tity tag predictions to mark the spans of person, or-
ganization, and location entities in the text. Ad-
ditionally, we heuristically define token sequence
patterns that may have answers for a slot that ac-
cepts a date or a number as an answer. Any se-
quence of nouns with at least one number can po-
tentially be a sequence for a date. Sequence of
numbers are marked since they can be answers to
“org:number of employees members” or “per:age”.
For anything else that can not be fit to these types,
we mark any sequence of nouns and adjectives (ob-
tained from SENNA’s part-of-speech tags) as a valid
sequence.

Once we mark these valid sequences for a partic-
ular slot in the text, we check if a predicted token
sequence exactly fits or overlaps with a marked se-



quence. In case of overlaps, we adjust the boundary
of the predicted token sequence so that it exactly fits
the sequence in the text. We execute this step for
each token sequence predicted for a slot and keep the
valid ones (i.e., exact fits or overlaps) only. We then
sort these valid token sequences based on their av-
erage token score (assigned by the classifier). Note
that, this score is not changed even in a case when
we fix the boundary of the token sequence (in case
of an overlap).

This validation process can help us get rid of in-
valid sequences, but it certainly can not handle re-
dundant answers, which we like to remove from our
list of valid token sequences as well. To do this,
we check if two valid token sequences have a sub-
string or acronym relationship between them. If
so, we remove the one with the lower average to-
ken confidence from the pool of valid sequences.
Additionally, we also check if two valid token se-
quences match after we remove punctuation sym-
bols and spaces from both of them and keep the one
with higher confidence. This step gets rid of answers
like “U.S.A.” or “U. S. A.” when we already have
“USA” as a response. However, we do not apply this
process for alternate names (for both persons and or-
ganizations) since they often have sub-string and/or
acronym relationships among themselves. For such
slots, we only keep those valid token sequences each
of which has either a sub-string or an acronym rela-
tionship with the query string.

Of the remaining token sequences, the one with
the highest average score is submitted as the slot-fill.
For multiple-valued slots, the scores are thresholded,
and up to four results are taken.

4 Classifiers and Features

We consider two approaches to classifying words
for slot fills. One is a convolutional neural network
based on a dense vector representation of each word,
learned through an unsupervised task as a language
model. The other is a logistic regression model
trained on sparse feature vectors. The logistic re-
gression model was the one officially submitted to
the contest.

In either case, the features are crafted to repre-
sent tags of the word currently being classified, in
addition to information about the rest of sentence.

In particular, the relationship to other nodes in the
parse tree is encoded.

4.1 Logistic Regression
For the logistic regression classifier, each possible
value of the following tags is considered a Boolean
feature:

• Single-valued features:

– Part of speech
– The word itself (we index 100,000 words),

or NIL if the word is not indexed
– The special mention tag (I, B, E, S, or O),

indicating whether the word is part of a
mention believed to be in a coreference
chain with the query

– Capitalization feature

• Multiple-valued features:

– Parse tree node descriptors (see below);
one feature is contributed by each node in
the parse tree

– Other words in the sentence, with relative
distances from the current word

– Other words in the sentence, without rela-
tive distances

Each feature group has a distinct encoding, so
the feature representing the current word is differ-
ent from the feature representing the current word
as part of the bag of words of the sentence.

Parse tree nodes are represented by a 4-tuple

(Node type,Pivot type,Up,Down)

that represents the path in the parse tree from the
current word to the node in question. Such a path
has a pivot, which is the node in the path with the
minimal depth from the root of the parse tree. The
node type and pivot type are given by Penn Tree-
bank constituent labels for nonterminal nodes (see
(Gildea and Jurafsky, 2002), Table 23), or by the part
of speech, for terminal nodes (words). Up and Down
refer to the length of the path from the current node
(a terminal node) to the pivot, and the length of the
path from the pivot to the node in question.

A single such feature represents each possible 4-
tuple, and one feature is contributed by every node
in the parse tree. Figure 1 illustrates an example.



Figure 1: Parse Tree Features.

The other words in the sentence contribute two
features each: one bag-of-words feature, and one
feature consisting of a pair such as (-2, “of”), which
means that the word “of” occurred in the same sen-
tence, two words before the word currently being
classified.

For the logistic regression classifier, we restricted
to the most frequent 10,000 such features. Each
word obtains an average of 146 true Boolean fea-
tures in this manner. Feature vectors are L2 normal-
ized to unit length, and the classifier is trained with
LibLinear (Fan et al., 2008), using L2-regularized
logistic regression and training in the primal space.

4.2 Convolutional Neural Networks

The convolutional neural network is trained with
similar information, encoded differently.

Fundamentally, the CNN classifies dense feature
vectors from a frame of five words around the cur-
rent word. Each word’s feature vector has two
parts—one representing the word itself, and another
summarizing other parse tree nodes, from the per-
spective of the current word. Figure 2 summarizes
this architecture.

The word feature vector consists of the same tags,
but learned embeddings are associated with each tag.
Fifty-dimensional embeddings of the words them-
selves are borrowed from SENNA, as they have al-
ready been trained in a semi-supervised manner to

be useful for many syntactic tasks; see (Collobert et
al., 2011) for the details of this training.

Additionally, each part of speech tag is assigned
a random embedding in a six dimensional space.
The capitalization feature and special mention tag
are each encoded in a single dimension.

Each word vector is concatenated with a tree fea-
ture vector, representing the rest of the parse tree
from the perspective of the current node. The tree
feature vector is computed on the basis of node vec-
tors from each node in the parse tree. The node
vector encodes the integers Up and Down from the
node descriptor in a single dimension each, and uses
a random six–dimensional embedding for the possi-
ble values of Node type and Pivot type.

The node feature vectors are each transformed
into a 15-dimensional space through a learned linear
layer, at the bottom of our neural network. These
results are aggregated by the max function in each
dimension, and the output becomes the tree feature
vector.

Higher levels of the convolutional neural network
act on the concatenation of the word vector and tree
vector for each node. First, a convolution over a slid-
ing window of five words transforms these vectors,
now 73-dimensional, into a 30-dimensional space.
Padding vectors are added to the beginning and end
of the sentence, so that these results may be obtained
at every position in the sentence, even if the sliding



Figure 2: Convolutional Neural Network for Slot Filling.

window extends beyond the beginning or end.
After squashing the outputs with a sigmoid func-

tion, a final linear layer maps the convolution out-
puts to two dimensions. Let these dimensions have
standard basis vectors δ0 = (1, 0) and δ1 = (0, 1).
The classifiers are trained to output the negative log
probabilities of the word belonging to the slot fill, by
setting the loss against an input vector ~xwith ground
truth δi as:

L(~x, δi) = − log
e−xi∑
j e
−xj

. (1)

Stochastic gradient descent is used to backpropa-
gate this error through the entire network, down to
the word and node type embeddings, which remain
fixed.

5 Training and Results

In development, we used three ground truth sources
for training and evaluation. Each was distributed to
all participants.

1. TAC 2009 KBP Reference Knowledge Base.
Two-thirds of the articles was used for training,
and the remaining one-third was reserved for
testing. Infoboxes were used to provide ground
truth data, as described below. Sentences from
the same article as the infobox were searched
for occurrences of the slot fill values.

2. TAC 2010 Evaluation Slot Filling Queries.
Sentences from the articles containing useful
slot fills (as indicated by the LDC judgments)

were searched for slot fill values. This data set
was used only for training.

3. TAC 2011 Evaluation Slot Filling Queries.
This data set was used in the same way as the
2010 data, but reserved for testing.

The TAC 2009 KBP Reference Knowledge Base
consists of Wikipedia articles, and the ground truth
data is extracted from Wikipedia infoboxes, us-
ing the mappings distributed by LDC. These map-
pings take 938 of the Wikipedia infobox slots,
such as actor:birthplace, and map them
to one or more TAC KBP slot names, such
as per:country of birth. In this partic-
ular example, the same infobox is mapped to
per:stateorprovince of birth as well, so
it is necessary to decide later which part of the In-
fobox value pertains to which slot.

We normalize infobox values as follows, when
necessary:

• Patterns resembling a date are normalized into
the form expected by the contest (e.g. 2012-04-
XX). For these slots, information not matching
the patterns is discarded.

• We consult the 2010 CIA World Factbook
(Central Intelligence Agency, 2010) for a list
of provinces and associated countries. Using
this list, we can take text for a Wikipedia in-
fobox such as actor:birthplace, identify
text matching a known province or country, and
use any remaining text as a possible city.



Table 1: Ground truth data for development.
Name Ground Truth Text
Wiki TAC 2009 KBP Reference KB (from Wikipedia) Same Articles
2010 TAC 2010 Evaluation Slot Filling Queries LDC Positive Documents
2011 TAC 2011 Evaluation Slot Filling Queries LDC Positive Documents

We follow a distant supervision heuristic (Mintz
et al., 2009) to ground these slot fills with support
in the text, but our approach differs slightly from
other teams because we do not determine (Entity,
Slot, Slot Fill) triples after reading the infoboxes. A
normalized infobox value is still a string of text, pos-
sibly longer than the appropriate slot fill value. For
example, the infobox value mapped to per:title
for Edward Wilkerson is bandleader and composer
and musician. Many teams (e.g. (Surdeanu et al.,
2011)) have relied on named entity recognition to
extract relevant triples from an infobox value, but
that approach does not work here. Instead, we look
for the longest match of the text against the infobox
that contains contains useful text. The notion of use-
ful depends on the slot type:

• Number-valued slots should contain a number

• Date-valued slots should contain a date

• Organization, location, or person slots should
contain a named entity

• Other slots should contain an adjective or noun

Thus we obtain a set of substrings of articles as pos-
itive slot fills for the 42 slots.

For the TAC 2009 KB reference corpus, the same
Wikipedia articles are searched to produce the dis-
tantly supervised ground truth data. For the TAC
2010 and TAC 2011 query data, each document pre-
viously judged by LDC to have a correct slot fill is
used as training data for the corresponding entity.

Recall that the classifier ultimately will classify
each word of every sentence of the retrieved docu-
ments (up to 1000) as a possible slot fill. In training,
the task is simplified because we do not process any
documents that are completely irrelevant: either the
document provides a positive answer to some slot
fill (TAC 2010 or TAC 2011), or the document is the
Wikipedia article about the entity itself (TAC 2009
Reference).

By far, we can obtain more ground truth labels
from Wikipedia than from the previous contest data,
which consisted of 80–100 entities each. However,
the style of Wikipedia articles is different from most
of the newswire articles in the evaluation corpus.
Furthermore, not every slot is well-represented by
Wikipedia infoboxes; per:cause of death oc-
curs in an infobox only twice, and only one of those
has support in the associated text.

For reference, Table 2 compares the accuracy of
the classifiers trained with Wikipedia (2009 refer-
ence corpus) alone, the 2010 queries alone, and both
together, in predicting slot fills for the 2011 queries.
These results represent the probabilities of tokens
being correctly classified as positive or negative, not
the accuracy of the final slot fill (which may re-
quire choosing among several positively-classified
substrings from several articles). Ultimately, train-
ing on a combination of the TAC 2009 (Wikipedia)
and TAC 2010 query data was most effective.

Table 3 compares the best slots (by F1 score)
when the logistic regression classifier trained and
tested on Wikipedia, to the best slots when it is
trained and tested on actual query data (2010 and
2011). The fact that the top five slots are disjoint
suggests that the examples captured by the respec-
tive distant supervision, techniques or the styles of
the documents, are quite different. This is another
motivation for combining the training sets.

Like the logistic regression classifier, the convo-
lutional neural network was trained on combined
Wikipedia (2009 reference corpus) and 2010 query
data, and tested on 2011 query data. Table 4 shows
the results on the final phrases submitted, after the
classifier outputs have gone through answer valida-
tion. As above, only articles known to have a use-
ful slot fill are classified, so the F1 scores are not
comparable to actual team submissions, but they are
comparable to each other. The convolutional neural
network improves upon the F1 score of the logistic



Table 2: Token-level performance on slot fills: Wikipedia versus Query data. Median over 42 slots. Logistic regression
classifier.

Training Testing F1: Median F1: 75th Pct F1: 90th Pct F1: 95th Pct
Wiki (trn) Wiki (tst) .184 .395 .542 .642
Wiki (trn) 2011 0 .031 .108 .185

2010 2011 0 .010 .160 .316
Wiki (trn) + 2010 2011 0 .064 .185 .221

Table 3: Top slots: Wikipedia versus Query data. Token-level results. Logistic regression classifier.
F1 Slot (Wikipedia) F1 Slot (Query)

.922 per:charges .667 per:age

.914 per:date of birth .414 org:website

.645 org:alternate names .319 org:top members/employees

.579 per:date of death .250 per:parents

.549 per:alternate names .160 per:siblings

regression model by 77%.
The convolutional neural network was not de-

signed in time for our official submission, so our
submitted run “papelo1” used the logistic regression
model. On the TAC 2012 regular slot filling task,
Papelo1 achieved F1=.062, with a recall of .050 and
a precision of .081. Suppressing all NIL outputs
would have raised the F1 score to .088, by improv-
ing recall to .097.

The non-NIL submissions from the other teams
were released as data for the Slot Filling Validation
task. Of our 77 correct non-NIL slot fills, 27.4%
were strings that were not submitted by another
team. Thus it may be useful to combine our tech-
niques with those of other systems. If provenance is
included, most teams (not runs) have entirely unique
sets of correct answers. For this reason, tuning a sys-
tem’s hyperparameters to optimize performance on
an answer key derived from past submissions may
be dangerous.

6 Conclusion

We introduced two new systems for slot filling based
on very general representations of syntactic features,
using a traditional logistic regression model and a
new convolutional neural network model. Our per-
formance in TAC 2012 was below the median, al-
though the CNN, achieving 77% better performance
on the 2011 task used for development, may have
surpassed the median F1=.099 if it had been done in

time. We showed a lack of generalization between
training data sets, indicating that the choice of train-
ing corpus and distant supervision technique may be
as important as any consideration in designing the
classifier.

References

Y. Bengio and R. Ducharme. 2001. A neural probabilis-
tic language model. In Advances in Neural Informa-
tion Processing Systems (NIPS).

A. Bordes, X. Glorot, J. Weston, and Y. Bengio. 2012.
Joint learning of words and meaning representations
for open-text semantic parsing. Journal of Machine
Learning Research.

U. S. Central Intelligence Agency. 2010. The World
Factbook 2010. U. S. Government Printing Office.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research, 12:2461–2505.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. 2008. Liblinear: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874.

D. Gildea and D. Jurafsky. 2002. Automatic label-
ing of semantic roles. Computational Linguistics,
28(3):245–288.

P. Koomen, V. Punyakanok, D. Roth, and W. Yih. 2005.
Generalized inference with multiple semantic role la-
beling systems (shared task paper). In Conference on
Computational Natural Language Learning (CoNLL).



Table 4: Results of the complete system. Systems are trained on the 2009 Wikipedia reference corpus plus 2010 query
data.

Classifier Test Data Recall Precision F1
Logistic Regression 2011 (Useful docs) .061 .293 .101

CNN 2011 (Useful docs) .138 .253 .179
Logistic Regression 2012 (Official) .050 .081 .062

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Sur-
deanu, and D. Jurafsky. 2011. Stanford’s multi-
pass sieve coreference resolution system at the conll-
2011 shared task. In Proceedings of the CoNLL-2011
Shared Task.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Dis-
tant supervision for relation extraction without labeled
data. In ACL-IJCNLP.

K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers,
M. Surdeanu, D. Jurafsky, and C. Manning. 2010.
A multi-pass sieve for coreference resolution. In
EMNLP-2010.

L. Shen, G. Satta, and A. Joshi. 2007. Guided learning
for bidirectional sequence classification. In Meeting of
the Association for Computational Linguistics (ACL).

R. Socher, E. Huang, J. Pennington, A. Ng, and C. Man-
ning. 2011a. Dynamic pooling and unfolding re-
cursive autoencoders for paraphrase detection. In
Advances in Neural Information Processing Systems
(NIPS).

R. Socher, J. Pennington, E. Huang, A. Ng, and C. Man-
ning. 2011b. Semi-supervised recursive autoencoders
for predicting sentiment distributions. In Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

M. Surdeanu, S. Gupta, J. Bauer, D. McClosky,
A. Chang, V. Spitkovsky, and C. Manning. 2011.
Stanford’s distantly-supervised slot-filling system. In
Text Analysis Conference (TAC).


