
Mathematical Symbol Recognition with

Support Vector Machines

Christopher Malon a,∗, Seiichi Uchida b, Masakazu Suzuki a

a Faculty of Mathematics, Kyushu University

Hakozaki 6–10–1, Higashi-ku, Fukuoka, 812–8581 Japan

b Faculty of Information Science and Electrical Engineering, Kyushu University

Motooka 744, Nishi-ku, Fukuoka, 819–0395 Japan

Abstract

Single–character recognition of mathematical symbols poses challenges from its two-

dimensional pattern, the variety of similar symbols that must be recognized dis-

tinctly, the imbalance and paucity of training data available, and the impossibility

of final verification through spell check. We investigate the use of support vector

machines to improve the classification of InftyReader, a free system for the OCR of

mathematical documents. First, we compare the performance of SVM kernels and

feature definitions on pairs of letters that InftyReader usually confuses. Second, we

describe a successful approach to multi–class classification with SVM, utilizing the

ranking of alternatives within InftyReader’s confusion clusters. The inclusion of our

technique in InftyReader reduces its misrecognition rate by 41%.

Key words: Support vector machine; OCR; Mathematical document;

Mathematical symbol recognition

Preprint submitted to Elsevier 24 January 2008

1 Introduction

Mathematics is the universal language of scientific literature, but a computer

may find it easier to read the human language in which surrounding text is

written. The failure of conventional OCR systems to treat mathematics has

several consequences:

• Readers of mathematical documents cannot automatically search for earlier

occurences of a variable or operator, in tracing the notation and definitions

used by a journal article.

• The appearance of mathematics on the same line as text often confounds

OCR treatment of surrounding words.

• Equations can only be represented as graphics by semantic transformation

systems, such as those converting digital documents into braille for accessi-

bility by blind readers [18].

Mathematical OCR was investigated as early as 1968 [1]; a survey of its diffi-

culties and previous approaches may be found in [2]. A modern system com-

peting with ours has achieved a 93.77% single-character recognition rate [9].

OCR of mathematics differs markedly from typical text recognition because

its single-character recognition phase must be followed by a structural anal-

ysis phase, in which symbol relationships involving superscripts, subscripts,

∗ Corresponding author. Present address: NEC Laboratories America, 4 Indepen-

dence Way, Princeton, NJ 08540, USA. Tel: +1 609 951 2594; Fax: +1 609 951

2482.
Email addresses: malon@nec-labs.com (Christopher Malon),

uchida@is.kyushu-u.ac.jp (Seiichi Uchida), suzuki@math.kyushu-u.ac.jp

(Masakazu Suzuki).

2

fractions, and matrices must be recovered. The two-dimensional arrangement

affects not only structural analysis but single-character recognition itself, be-

cause typical assumptions about bounding boxes and baselines are violated.

Even in relatively simple equations such as

φ|C(z) = exp(zNφ)

the subscript-positioned capital blackboard bold C, whose base is nearly aligned

with that of the vertical bar, might be mistaken for a lower-case letter.

In this paper, we focus on the single-character recognition phase that precedes

structural analysis. We have addressed structural analysis in [8], [16], [12], and

[20]. The single-character OCR of mathematics poses challenges that, if not

unique, place it alongside the most difficult human languages to recognize. The

recognition problem consists of about 1,000 classes, many with little existing

ground truth data. Certain distinct letters, such as Latin v and Greek ν, are

in close resemblance. Most unusually, we desire the distinction of styles.

In typical mathematical usage, different styles of the same letters will have

completely different meanings. The problem is most severe not in engineer-

ing, but in pure mathematics. For example, within a single article in p-adic

representation theory, the bold letter G often will represent a group over an

algebraically closed field, the plain italic G will represent its rational points

over a p-adic field k, and sans-serif G a reductive quotient over the residual

field k, with German g used for a Lie algebra. Calligraphic A may represent a

simplicial complex, and italic A a torus. (See, e.g., [6].) An optical character

recognizer that does not keep these letters distinct would be practically use-

less in this branch of algebra. However, within a single style, fonts (Computer

Modern, Times, Helvetica, etc.) should not be distinguished, so that mathe-

3

matical formulas can be compared between articles, regardless of the fonts the

publisher has chosen.

OCR problems were considered very early in the development of SVM, with

promising results. An experiment by Cortes and Vapnik [5] achieved 95.8% ac-

curacy on handwritten digits in the US Postal Service database. More partic-

ularly, in character recognition of human languages with hundreds of distinct

characters, SVM have achieved promising results, for example, in handwrit-

ten Chinese (99.0%, [7]) and printed Ethiopian (91.5%, [15]). Recently, SVM

has been applied to handwritten mathematics on a blackboard [22], but to our

knowledge, OCR of printed mathematics using SVM has not been investigated

before.

This paper describes an experiment using SVM to improve multi-class classi-

fication by an existing OCR system. This OCR system is a purified version of

the InftyReader, a freely available OCR engine for mathematics, described in

[20]. First, we study the ability of various kinds of SVM, as binary classifiers,

to distinguish pairs of letters that confuse InftyReader. Then, we show how

the classifiers may be integrated with the system to improve its multi-class

classification ability.

2 Ground truth data

The InftyProject defined a set of 1,629 mathematical characters to be dis-

tinguished, and released several databases of ground truth, containing both

single-character and structural recognition results, starting with InftyCDB-1

[21], whose composition is described in [23]. Because some mathematical sym-

4

bols occur very rarely, it is necessary to choose between extracting each symbol

from documents in their entirety, or seeking out samples of particularly rare

characters to provide more uniform representation. The newest databases of

the InftyProject, InftyCDB-3-A and InftyCDB-3-B [19], targeted at single-

character recognition experiments, cover both approaches. InftyCDB-3-B rep-

resents twenty articles from advanced mathematics journals at full length; it

consists of a tenth of the samples of InftyCDB-1, chosen by clustering tech-

niques. InftyCDB-3-A [17] aims to represent rare characters by more samples;

it includes not only journal articles, but font samples, and multiple scans of

letters at different greyscale thresholds. We use InftyCDB-3-A (188,752 char-

acters, representing 384 symbol entities from 326 documents) for training,

and InftyCDB-3-B (70,637 characters, representing 275 symbol entities from

20 documents) for testing. No database includes samples of all 1,629 symbol

entities defined by the Infty Project.

In InftyCDB-3-A and InftyCDB-3-B, a sample of ground truth data for a

symbol entity consists of a black and white bitmap image of that symbol in

isolation, framed inside its bounding box, extracted from a scanned physical

document. Thus, the data set does not test the OCR system’s ability to group

nearby components together, as in the two parts of the symbol ‘≤.’ Because

spatial context is lost, some pairs of symbols, such as hyphens and underscores,

must be regarded as the same. InftyReader distinguishes among these char-

acters after an entire line of text or mathematical expression was read. Also,

light or dark printing can affect whether a character should be regarded as

bold or not; InftyReader makes such decisions after the density of all charac-

ters on the page is known. Thus, bold characters are thus identified with their

non-bold counterparts. German letters, which number too few, and touching

5

and broken characters, are excluded from our training and testing data. 1

In Table 1, we present representatives of the 384 symbol entities appearing in

InftyCDB-3-A. Figure 1 shows the number of training samples available for

each of these classes. Although an average class has between 500 and 1,000

training samples, more than 75 classes have fewer than 50 training samples.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000

N
u

m
b

e
r

o
f

c
la

s
s
e

s

Number of samples

Fig. 1. Histogram of number of training samples, by class.

Infty-CDB-3-A (188,752 characters, representing 384 symbol entities from 326

documents) for training, and Infty-CDB-3-B (70,637 characters, representing

275 symbol entities from 20 documents) for testing. No database includes

samples of all 941 symbol entities defined by the Infty Project [16].

A sample of ground truth data for a symbol entity consists of a black and

white bitmap image of that symbol in isolation, extracted from a scanned

physical document. Bold letters are identified with their non-bold counter-

parts, because they are distinguished after single-character recognition, with

the help of contextual information. German letters, which number too few,

and touching and broken characters, are also excluded from our training and

testing data.

In Table 1, we present representatives of the 384 symbol entities appearing in

Infty-CDB-3-A. Figure 1 shows the number of training samples available for

each of these classes.

5

Fig. 1. Histogram of number of training samples, by class.

3 Confusion Matrix

The engine of InftyReader typically makes use of contextual information, but

for this experiment, we distill it to ignore information about a character’s size

or surrounding characters. The purified engine simply classifies images framed

inside bounding boxes. By running the purified InftyReader engine on the

training data, we produce an integer-valued confusion matrix, with rows that

count ground truth and columns that count recognition results. Every nonzero

1 In the earlier ground truth database InftyCDB-1, touching characters comprise

1.25% of the character samples. We address the segmentation of touching characters

in [14], with a strategy that only needs to query SVM that are trained to recognize

correctly segmented input images.

6

Upright Latin

Upright Greek

Calligraphic

Blackboard Bold

Punctuation

Brackets

Accents

Arrows

Binary Operators

Relational Operators

Big Symbols

Other Symbols

Italic Latin

Italic Greek

Italic Ligatures

Upright Ligatures

1

Table 1

Classes represented in InftyCDB-3-A.

off-diagonal entry of this matrix represents a confusing pair, for which an SVM

should be trained. There are 771 confusing pairs, counted as unordered pairs.

7

In the confusion matrix, each row represents Infty’s recognition result and

each column represents ground truth. The set of nonzero entries from each

row of the confusion matrix represents a confusion cluster. The sizes of these

clusters are indicated in Figure 2. Most clusters consist of fewer than five alter-

natives, and the biggest cluster contains 26 alternatives. As the figure shows,

the confusion matrix is relatively sparse, and performing multi-class classifi-

cation only on confusing alternatives, instead of all 384 symbols, significantly

reduces complexity. Each cluster can be partially ordered by the likelihoods

of each alternative, as indicated by the values of the corresponding matrix

entries. This ordering will be utilized in our multi-class classification strategy

later.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

c
la

s
s
e

s

Size of cluster

Fig. 2. Sizes of confusion clusters.

gle mesh, these feature vectors are constructed from directional histograms

that measure the amount of contour pointing along four principal axes, in

each position of the mesh. A single pixel contributes to the mesh position

in which it lies, and possibly to several neighboring positions, as determined

by mask functions over the bitmap. These mask functions sum to one every-

where in the bitmap. Experience in constructing the recognition engine for the

InftyReader suggested that constantly square meshes capture insignificant in-

formation when a character is especially tall or short. Thus, our mesh data is

divided into “tall,” “square,” and “short” blocks, representing the directional

features from 3 × 5, 5 × 5, and 5 × 3 meshes, respectively. The set of blocks

to be computed depends on the aspect ratio; one or two of the blocks will

always be filled with zeros. The three blocks, together with the arctangent of

the bounding box’s aspect ratio, constitute our “direction” feature vectors,

with dimension effectively (i.e., excluding zero blocks) between 61 and 161.

In [17], Vapnik states the philosophy that, in contrast to classical approaches

that work best with “strong features,” “it is not important what kind of ‘weak

feature’ one uses; it is more important to for ‘smart’ linear combinations.” As

an extreme example of this philosophy, Cortes and Vapnik’s original SVM

7

Fig. 2. Sizes of confusion clusters.

4 Pairwise classification with SVM

4.1 Features for SVM training

Some of our SVM are trained with directional histograms of the contour,

introduced by Kimura et al [13] for Japanese handwriting recognition. For a

8

single mesh, these feature vectors are constructed from directional histograms,

measuring the amount of horizontal, vertical, and diagonal contour, in each

position of the mesh. A single pixel contributes to the mesh position in which

it lies, and possibly to several neighboring positions, as determined by mask

functions over the bitmap. These mask functions sum to one everywhere in

the bitmap.

The recognition engine for InftyReader uses differently sized meshes, in case a

character is especially tall or short. Depending on a character’s aspect ratio,

data from a 3 × 5, 5 × 5, or 5 × 3 mesh may be more significant. Our 221–

dimensional “directional” feature vectors consist of the aspect ratio, and three

blocks, representing the directional contour histograms from the three mesh

sizes. Depending on the character’s aspect ratio, data from only one or two

of the blocks will be regarded as significant and used for training or testing.

For example, an input ‘l’ that has aspect ratio exceeding 1.7 will use only the

5× 3 block, and the aspect ratio, for classification. 2

In [24], Vapnik states the philosophy that, in contrast to classical approaches

that work best with “strong features,” “it is not important what kind of ‘weak

feature’ one uses; it is more important to form ‘smart’ linear combinations.”

As an extreme example of this philosophy, Cortes and Vapnik’s original SVM

study of the USPS handwritten digit database [5] utilizes (smoothed, cen-

2 The SVM uses the 221–dimensional feature vector, with the insignificant blocks’

coordinates changed to zero, for training and testing. The naive classifier assigns

a testing sample to a class by finding the nearest centroid in the feature subspace

consisting of blocks that are significant for that sample. Within a single class, not

every training sample will have the same significant blocks, so the centroids for each

block are computed separately.

9

tered, de-slanted) bitmap images as feature vectors. Bitmaps as feature vec-

tors, sometimes processed by principal component analysis, linear discriminant

analysis, or nonlinear normalization, also have been the basis of more modern

OCR experiments with SVM ([7], [4], and [15]).

To investigate whether the style-but-not-font distinction aspect of our recog-

nition problem makes bitmap-based approaches less effective, or rather if di-

rectional features discard too much potentially useful information, we train

another set of SVM with bitmap-like feature data. Because characters appear

in bounding boxes of different aspect ratios, we cannot use raw bitmaps di-

rectly. Rather, we impose a 20 by 20 grid onto each bitmap, and measure the

blackness in each grid position. Taking these measurements together with the

arctangent of the aspect ratio, we obtain 401–dimensional “density” feature

vectors.

4.2 Benchmark: A naive classifier

Ideally, we would compare performance of the SVM against the pure Infty

recognizer itself. However, the pure Infty recognizer does not solve a binary

classification problem like the SVM classifiers do. We can only say that the

rate at which it picks a class A over a class B in binary selection should be

greater than the rate at which it selects A out of all possible classes, and vice

versa. These two bounds typically yield an interval too wide to be informative,

so we implement a naive binary classifier as a more precise benchmark.

The naive classifier is constructed by recording the centroids of the sets of

feature vectors representing instances of each symbol in the training data. We

10

use the directional feature vectors for this construction. The naive classifier

can perform either multi-class or binary classification; in any case, it assigns

a test sample to the class with the closest centroid.

4.3 SVM training and performance

Altogether, we consider five forms of SVM constructions. On the directional

features, we construct SVM with linear, Gaussian, and cubic polynomial ker-

nels. On the density features, we construct SVM with linear and cubic poly-

nomial kernels. These kernels have the forms:

Klinear(~x, ~y) = ~x · ~y (1)

KGaussian(~x, ~y) = e−γ‖~x−~y‖2

(2)

Kcubic(~x, ~y) = (γ~x · ~y + 1)3. (3)

Support vector machines are trained to perform binary classification by solving

the following optimization problem. Given training data with feature vectors

~xi assigned to class yi ∈ {−1, 1} for i = 1, . . . , l, the support vector machines

solve

min
~w,b,~ξ

1

2
K(~w, ~w) + C

l∑
i=1

ξi (4)

subject to yi(K(~w, ~xi) + b) ≥ 1− ξi

ξi ≥ 0

where ~ξ is an l–dimensional vector, and ~w is a vector in the same feature space

as the ~xi (see, e.g., [10]). The solution determines the classifier

f(~x) = sgn(K(~w, ~x) + b).

We use the LibSVM software [3] to train SVM classifiers.

11

The performance of a binary classifier f that assigns an input vector ~x of label

y to the class f(~x), may be measured using the smaller of the recognition rates

of the classes:

min
c=−1,1

P (f(~x) = y | y = c)

We call this number the min-recall of the classifier.

Before training an SVM, the soft margin C and any parameters appearing in

the kernel K must be chosen in advance (here, γ). For the linear and Gaussian

kernel experiments using directional features, we choose these parameters by

five-fold cross validation. Each training document is assigned, in its entirety,

at random to one of five sets. For each binary classification problem, the

cross-validation accuracy for a choice of parameter values is computed by

the leave-one-out method. Parameter choices are inspected within a grid in

logarithmic space, and the grid is expanded until the accuracy stabilizes or

begins decreasing at all boundaries, or until an eight-minute timeout. The

parameter choice producing the highest cross-validation accuracy is used once

more to train the final SVM for the problem on the entire training set. This

procedure cannot be performed on a binary classification problem if all the

training data for either class is concentrated in a single one of the five sets;

for the 17 (of 771) pairs where we have so little data, we do not construct a

binary SVM.

In fact, the parameter choice is rarely important for the linear SVM; up to

the hardest soft margin considered, accuracies typically remain the same, as

one would expect if the data were linearly separable. A softer hard margin

produces a 3% or greater improvement in min-recall on four pairs, and the

constant choice C = .01 produces the best accuracies on training data over-

12

all. For the Gaussian kernel, as well, there is a parameter setting that yields

cross-validation accuracies on each problem that are nearly as high as if the

assignment is allowed to vary with the problem.

The binary classifiers are then evaluated on the testing data set. In Tables

2 and 3, we compare their performance against each other and the naive

classifier, for contour directional features and for density features. These tables

give the percentage of confusing pairs on which each classifier surpasses various

min-recall thresholds. This evaluation is only carried out for the 528 confusing

pairs for which both classes have at least ten samples of testing data.

Min-recall Naive SVM SVM SVM
Linear Gaussian Cubic

> 0 100.00% 100.00% 100.00% 100.00%
> .5 98.67% 99.05% 99.05% 99.05%
> .6 98.30% 98.48% 98.67% 98.48%
> .7 97.35% 98.30% 98.30% 98.30%
> .8 95.27% 97.35% 97.54% 97.35%
> .9 93.75% 95.83% 95.64% 95.64%
> .95 90.91% 92.99% 93.18% 92.61%
> .97 84.28% 90.34% 89.77% 89.96%
> .99 73.30% 84.28% 82.95% 84.28%
> .995 66.86% 78.22% 74.62% 77.84%
> .999 56.82% 69.13% 64.39% 69.89%

Table 1: SVM performance on confusing pairs, using contour directional features

1

Table 2

SVM performance on confusing pairs, using contour directional features.

Figure 1: Improvements

1

Fig. 3. Pairs on which the min-recall of linear SVM with directional features is at

least 10% higher than that of the naive classifier.

13

Min-recall SVM SVM SVM
Linear Gaussian Cubic

> 0 100.00% 99.60% 96.21%
> .5 98.86% 97.18% 94.51%
> .6 98.48% 96.98% 94.32%
> .7 98.11% 96.18% 92.99%
> .8 97.16% 94.97% 91.10%
> .9 94.70% 91.75% 88.07%
> .95 91.10% 86.92% 83.33%
> .97 88.83% 80.08% 78.22%
> .99 82.58% 71.03% 70.83%
> .995 78.03% 67.00% 66.29%
> .999 67.80% 55.33% 51.14%

Table 1: SVM performance on confusing pairs, using density features

1

Table 3

SVM performance on confusing pairs, using density features.

Min-recall x-recall y-recall x y Max SV fraction

0.1042 0.1042 0.9553 .3548

0.1042 0.1042 1.0000 .1935

0.1250 1.0000 0.1250 .1935

0.3333 0.3333 1.0000 .3548

0.4211 0.4211 0.9306 .2934

0.5750 0.9907 0.5750 .0698

0.5843 0.5843 0.8704 .1718

0.5909 0.5909 1.0000 .1400

0.6136 0.6136 1.0000 .1200

0.7222 0.7222 0.9297 .3768

0.7407 1.0000 0.7407 .1236

0.7407 0.9826 0.7407 .0356

0.7407 0.9943 0.7407 .0300

0.7833 0.9535 0.7833 .2556

Table 1: Style misrecognitions on testing data

1

Table 4

Pairs with linear SVM min-recall below .80.

Using contour directional features, each SVM kernel substantially exceeds the

performance of the naive classifier. The Gaussian kernel falls short of the per-

formance of the linear kernel. Feature choice matters greatly, perhaps because

training samples are so scarce. With density features, the linear SVM performs

slightly worse than with directional features, but more complicated kernels

perform far worse, not even matching the naive classifier’s benchmark. These

14

kernels require more training time, so that fewer kernel parameter choices can

be tested within the eight minute training limit. The linear SVM with direc-

tional features is efficiently chosen, trained, and utilized, and is as effective

as the other classifiers, so we will use it as the basis for the analyses and

multi-class experiments in the following sections.

The confusing pairs on which the linear SVM achieves the greatest improve-

ment in min-recall over the naive classifier are shown in Figure 3. The most

difficult pairs for SVM are shown in Table 4; as expected, many of these require

large fractions of training vectors for support. Remarkably, many distinctions

are adequately learned by the linear SVM without much training data. Even

among the 53 confusing pairs with fewer than 25 samples in the smaller class,

the average min-recall is 96.2%.

5 Multi-class classification

By starting with a fast classifier, we reduce our multi-class classification prob-

lem from 1,629 classes to the size of the confusion cluster of an Infty recognition

result, which can vary as shown in Figure 2. Popular methods of combining bi-

nary SVM to perform multi-class classification are reviewed in [11], including

a method based on one-versus-all classifiers, and two methods based on one-

versus-one classifiers (the max-wins and directed acyclic graph approaches).

Each approach has well-known drawbacks, and none is suited to utilize a

priori information about the likelihood of alternatives, though the directed

acyclic graph method requires an order for the candidates to be chosen, whose

implications are far from obvious.

15

Any of these methods could be applied directly to a confusion cluster, but

instead, we use a method that utilizes the ranking of alternatives in a confusion

cluster, to make it likely that the most likely misrecognitions will be tested

with an SVM.

For an Infty recognition result i, the confusion cluster C(i) of misrecognition

candidates is partially ordered by likelihood, as explained in Section 3. Let

C ′(i) be the subset of alternatives j ∈ C(i) for which a binary SVM comparing

j and i was constructed. After the pure Infty engine recognizes a character as

i, our method starts to apply the SVM for (j, i) for each j ∈ C ′(i), starting

with the most likely j. When any j wins over i in the SVM classification, the

testing is stopped, and j is reported as the classification. If no j wins, i is kept

as the classification.

This method requires us only to train SVM on confusing pairs; other 1-versus-

1 approaches would require us to train SVM on all pairs of letters that appear

together in some confusion cluster. Of course, testing complexity is also linear

in the number of letters in a cluster.

Without SVM, the pure Infty engine recognizes characters with 96.10% accu-

racy on our testing data set. Using SVM by this method, the recognition rate

rises to 97.70%, so that the number of misrecognized characters falls by 41%.

When Infty makes the correct choice and our method does not, it always

means that an SVM’s decision was at fault. If neither Infty nor our method

chooses correctly, three phenomena can explain the mistake. The SVM testing

the Infty’s choice against the right alternative may have chosen the wrong re-

sult when it was reached (we count the cases where an SVM was not trained,

because of insufficient data, as such a case). The confusion of Infty’s guess

16

for the correct answer might not have occurred in the training data, so that

the right alternative was not represented in the confusion cluster; we call this

situation an “unprecedented mistake.” The final alternative is called “shadow-

ing.” On an instance of testing data for which Infty guesses i, and the correct

answer is k, we say that an SVM is “shadowed” if some other alternative j

occurs before k in the confusion cluster, and j defeats i, so that the i versus

k classifier is never run.

Altogether, the classification on the 70,637 testing samples may be synopsized

as follows:

• Infty right, output right: 67,100

• Infty wrong, output right: 1,912

• Infty right, output wrong: 784

• Infty wrong, output wrong, SVM wrong or not trained: 399

• Infty wrong, output wrong, unprecedented mistake: 280

• Infty wrong, output wrong, SVM shadowed: 162

If shadowing happened frequently, our multi-class strategy would be inappro-

priate, but this data shows that it happens quite rarely.

6 Style distinction

One novel aspect of our single-character recognition problem is the distinction

of a letter in Roman, italic, calligraphic, and blackboard bold styles, regardless

of its font. The efficacy of SVM on this aspect of the problem is compared to

that of other techniques in Table 5.

17

Naive Infty SVM

Total number of confused pairs 315 321 256
Confused pairs representing style mistakes 46 51 37

Total number of misrecognitions 3,832 2,753 1,625
Style recognition errors 254 219 116

Table 1: Style misrecognitions on testing data

1

Table 5

Style misrecognitions on testing data

The decrease in the number of confusing pairs means that the SVM can distin-

guish certain styles with 100% accuracy that pose confusion to other classifiers.

The total number of style mistakes decreases from Infty to SVM by a greater

margin than the misrecognition rate overall.

With occasional mistakes, the naive classifier typically can distinguish calli-

graphic and blackboard bold from other styles. Its main weakness is the dis-

tinction of italic characters. The linear SVM shows significant improvement

in this regard. In Figure 4, we display three italic pairs that are markedly

improved with SVM.

The only case where linear SVM performed remarkably worse than the naive

classifier was in the distinction of lower case italic l from script lower case `.

7 Summary

We have demonstrated the effectiveness of SVM on a large multi-class prob-

lem, with many similar symbols and many classes with little training data.

The SVM managed to learn many binary classifications well for which there

was a paucity of training data. Though all SVM kernels provided about the

same performance on directional features, the linear classifier had superior

performance on density features. Generally, SVM trained on directional fea-

18

I. Classification of Naive classifier

Failures Successes Successes Failures

II. Classification of Linear SVM

Failures Successes Successes Failures

Figure 1: Classification of the same letters in different styles.

1

Fig. 4. Classification of the same letters in different styles.

tures performed marginally better than SVM trained on density features. The

SVM excels at distinguishing styles of characters, particularly italic and non-

italic variants, which are indistinguishable to simpler methods using the same

sets of features.

We have integrated these SVM into the solution of a large multi-class problem,

by testing only pairs of symbols mistaken by an existing OCR system. The

complexity is low, and the most likely confused alternatives are preferred by

the algorithm. The single-character misrecognition rate of the OCR system

falls by 41% with the introduction of SVM. We note that we do not omit pairs

often regarded as indistinguishable without size information (lower and upper

case versions of C, O, P, S, U, V, X, and Z) in reporting our recognition rate.

19

Many of the mistakes that remain after the application of SVM represent char-

acters that are truly indistinguishable without contextual information (such

as the character’s size relative to surrounding characters), or that represent

degraded character images. We will try to improve the use of contextual in-

formation in Infty, and develop better methods for the treatment of touching

and broken characters, in future work.

Acknowledgments

This work was supported by the Kyushu University 21st Century COE Pro-

gram, “Development of Mathematics with High Functionality.”

References

[1] Anderson, R. Syntax-directed recognition of hand-printed two-dimensional

mathematics. PhD thesis, Harvard University, 1968.

[2] Chan, K.-F., and Yeung, D.-Y. Mathematical expression recognition: a

survey. IJDAR 3, 1 (2000), 3–15.

[3] Chang, C.-C., and Lin, C.-J. LIBSVM: a library for support vector

machines, 2001. Software available at http://www.csie.ntu.edu.tw/

%7Ecjlin/libsvm.

[4] Chang, F., Lin, C.-C., and Chen, C.-J. Applying a hybrid method to

handwritten character recognition. In ICPR ’04: Proceedings of the 17th

International Conference on Pattern Recognition (Washington, DC, USA,

2004), vol. 2, IEEE Computer Society, pp. 529–532.

20

[5] Cortes, C., and Vapnik, V. Support-vector networks. Mach. Learn. 20, 3

(1995), 273–297.

[6] DeBacker, S. Stable distributions supported on the nilpotent cone for the

group G2. In The Unity of Mathematics; In Honor of the Ninetieth Birthday

of I.M. Gelfand, Progress in Mathematics, vol. 244. Birkhäuser, Boston, 2006.

[7] Dong, J.-X., Krzyzak, A., and Suen, C. An improved handwritten Chinese

character recognition system using support vector machine. Pattern Recogn.

Lett. 26, 12 (2005), 1849–1856.

[8] Eto, Y., and Suzuki, M. Mathematical formula recognition using virtual

link network. In ICDAR ’01: Proceedings of the Sixth International Conference

on Document Analysis and Recognition (2001), IEEE Computer Society Press,

pp. 430–437.

[9] Garain, U., Chaudhuri, B. B., and Ghosh, R. P. A multiple-classifier

system for recognition of printed mathematical symbols. In ICPR ’04:

Proceedings of the 17th International Conference on Pattern Recognition

(Washington, DC, USA, 2004), IEEE Computer Society, pp. 380–383.

[10] Hsu, C.-W., Chang, C.-C., and Lin, C.-J. A practical guide to support

vector classification. http://www.csie.ntu.edu.tw/%7Ecjlin/papers/

guide/guide.pdf, July 2003.

[11] Hsu, C.-W., and Lin, C.-J. A comparison of methods for multi-class support

vector machines. IEEE Transactions on Neural Networks 13 (2002), 415–425.

[12] Kanahori, T., and Suzuki, M. Detection of matrices and segmentation

of matrix elements in scanned images of scientific documents. In ICDAR ’03:

Proceedings of the Seventh International Conference on Document Analysis and

Recognition (Washington, DC, USA, 2003), IEEE Computer Society, pp. 433–

437.

21

[13] Kimura, F., Wakabayashi, T., Tsuruoka, S., and Miyake, Y.

Improvement of handwritten Japanese character recognition using weighted

direction code histogram. Pattern Recognition 30, 8 (1997), 1329–1328.

[14] Malon, C., Uchida, S., and Suzuki, M. Separation of touching characters

using DP matching. In IEICE Technical Report PRMU2006: Proceedings of the

IEICE Conference on Pattern Recognition and Machine Understanding (2007),

pp. 13–18.

[15] Meshesha, M., and Jawahar, C. Recognition of printed Amharic

documents. In ICDAR ’05: Proceedings of the Eighth International Conference

on Document Analysis and Recognition (Washington, DC, USA, 2005), IEEE

Computer Society, pp. 784–788.

[16] Murakami, M., and Suzuki, M. Improvement of mathematical structural

analysis by Center-Band. In IEICE Technical Report PRMU2001-270 (2002-

03), pp. 203–210.

[17] Suzuki, M. InftyCDB-3: a ground truthed database of words/formulae images,

third distribution. http://www.inftyproject.org/en/database.html.

[18] Suzuki, M., Kanahori, T., Ohtake, N., and Yamaguchi, K. An

integrated OCR software for mathematical documents and its output with

accessibility. In Computers helping people with special needs, 9th International

Conference ICCHP 2004, Paris (July 2004), Lecture Notes in Computer Science

3119, Springer, pp. 648–655.

[19] Suzuki, M., Malon, C., and Uchida, S. Databases of mathematical

documents. Research Reports on Information Science and Electrical

Engineering of Kyushu University 12, 1 (2007), 7–14.

[20] Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., and Kanahori, T.

Infty: an integrated OCR system for mathematical documents. In DocEng ’03:

22

Proceedings of the 2003 ACM symposium on Document engineering (New York,

NY, USA, 2003), ACM Press, pp. 95–104.

[21] Suzuki, M., Uchida, S., and Nomura, A. A ground-truthed mathematical

character and symbol image database. In ICDAR ’05: Proceedings of the Eighth

International Conference on Document Analysis and Recognition (Washington,

DC, USA, 2005), IEEE Computer Society, pp. 675–679.

[22] Tapia, E., and Rojas, R. Recognition of on-line handwritten mathematical

formulas in the E-Chalk system. In ICDAR ’03: Proceedings of the Seventh

International Conference on Document Analysis and Recognition (Washington,

DC, USA, 2003), IEEE Computer Society, pp. 980–984.

[23] Uchida, S., Nomura, A., and Suzuki, M. Quantitative analysis of

mathematical documents. International Journal on Document Analysis and

Recognition 7, 4 (2005), 211–218.

[24] Vapnik, V. The nature of statistical learning theory. Springer-Verlag New

York, Inc., New York, NY, USA, 1995.

23

