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Abstract

In this paper, we study percolation on finite Cayley graphs. A con-

jecture of Benjamini says that the critical percolation pc of any vertex–

transitive graph satisfying a certain diameter condition can be bounded

away from one. We prove Benjamini’s conjecture for some special classes

of Cayley graphs. We also establish a reduction theorem, which allows us

to build Cayley graphs for large groups without increasing pc.

Introduction

Percolation on finite graphs is a new subject with a classical flavor. It arose
from two important and, until recently, largely independent areas of research:
Percolation Theory and Random Graph Theory. The first is a classical Bernoulli
percolation on a lattice, initiated as a mathematical subject by Hammersley
and Morton in the 1950’s, and which became a major area of research. A
fundamental albeit elementary observation that the critical percolation pc is
bounded away from 1 on Z

2 has led to a number of advanced results and quests
for generalizations. Among those most relevant to this work, let us mention the
Grimmett Theorem regarding the ‘smallest’ possible region under a graph in Z

2

for which one still has pc < 1. Similarly, percolation in finite boxes has become
crucially important as a source of new questions, as well as a tool (see [13] for
references and major results in the area.)

In the past decade, much attention within the subject of percolation has
been devoted to the study of percolation on Cayley graphs, and, more generally,
vertex–transitive graphs. A series of conjectures by Benjamini and Schramm [6]
would predict an interplay of Probability Theory and Group Theory in which
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the probabilistic properties of the (bond or site) percolation depend heavily on
the algebraic properties of an underlying (infinite) group, but not on a particular
generating set. We refer to [7] for a description of recent progress in this subject.

Motivated by the study of percolation on infinite Cayley graphs, Benjamini
in [5] (see also [2]) extends the notion of critical probability to finite graphs
by asking at which point the resulting graph has a large (constant proportion
size) connected component. He conjectured that one can prove a new version
of pc < 1 − ε, under a weak diameter condition. (Here and everywhere in the
introduction, ε > 0 is a universal constant independent of the size of the graph.)
In this paper we present a number of positive results toward this unexpected,
and, perhaps, overly optimistic conjecture.

Our main results are of two types. First, we concentrate on special classes of
groups and establish pc < 1−ε for these. We prove Benjamini’s conjecture for all
abelian groups with Hall bases as generating sets. We also prove that pc < 1−ε
for Cayley graphs whose generating sets have enough short disjoint relations, a
notion somewhat similar to that in [4]. Our most important, and technically
most difficult result is the Reduction Theorem, which enables us in certain cases
to obtain sharp bounds for pc of a Cayley graph of a group G depending on those
of a normal subgroup H / G and a quotient group G/H . While the full version
of Benjamini’s conjecture remains wide open, the Reduction Theorem allows us
in certain cases to concentrate on finite simple groups (a sentiment expressed
in [5]). By means of the classification of finite simple groups [12], and a recent
series of probabilistic results relying on it (see e.g. [18]), one can hope that our
results will lead to further progress towards understanding percolation on finite
Cayley graphs.

Our Reduction Theorem requires that the index [G : H ] not be too large
in relation to |H |. In the case where H has a complement K and G is the
semidirect product G = H o K, this condition can be dropped, and we simply
require that both |H | and |K| exceed some constant. Theorem 14 describes this
situation.

Let us also describe a connection to Random Graph Theory. The pioneer
paper [11] of Erdős and Rényi considered random graphs either as random
subgraphs of a complete graph Kn, or as a result of a random graph process,
in which edges are added one at a time. We use only the first model here.
Although one needs the probability p of an edge to be roughly log n/n for the
graph to become connected, a much smaller value p = (1 + ε)/n suffices for the
creation of a ‘giant’ (c(ε)n size) connected component.

The work of Erdős and Rényi led to the study of properties of random graphs,
and more recently, of random subgraphs of finite graphs (see e.g. [1, 9, 14]) In
the past years, connectivity and Hamiltonicity have remained the most studied
properties, ever since the celebrated Margulis’ Lemma, rediscovered later by
Russo (see e.g. [15, 17].) One can view our work as a new treatment of the
existence of a giant component in a large class of vertex–transitive graphs.

Percolation on Cayley graphs seems to resemble percolation on a more gen-
eral class of vertex–transitive graphs. For infinite groups, this can be partially
explained by the fact that percolation properties such as pc < 1 − ε are invari-
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ant under quasi–isometry [6]. In fact, it remains an open problem whether all
vertex–transitive graphs are quasi–isometric to Cayley graphs; the only poten-
tial counterexample was proposed in [10]. In this paper we restrict ourselves to
Cayley graphs, as their rich group theoretic structure allows a combination of
techniques to be applied.

A few words about notation: For the rest of the paper, G always will denote
a finite group, Γ will denote a finite graph, and |Γ| will denote the number of
vertices in Γ. The symbol log denotes the logarithm base 2. As in [13], we
sometimes write real–valued quantities in places where integers are required, in
order to avoid extra notation.

1 Definitions and main results

Recall from [13] the definition of percolation on a lattice. Let Ld be the integer
lattice in d dimensions, with Z

d its vertices and Ed = {((x1, . . . , xd), (y1, . . . , yd)) :
for some i, |xi − yi| = 1 and for j 6= i, xj = yj} its edges. Consider the prob-
ability space with outcomes Ω =

∏
e∈Ed{0, 1} and whose measurable sets are

the elements of the smallest σ–field in which the state of any finite set of edges
can be tested. If ω ∈ Ω, we say that an edge e remains (or is open) in the
outcome ω if ω(e) = 1, and that e is deleted (or is closed) otherwise. Let µe be
the Bernoulli measure on the edge e in which e remains with probability p. The
product measure of the µe gives a measure on the probability space, which we
call p–percolation.

Let Γ be a finite graph. We write its set of edges as E(Γ), and its set of
vertices (by abuse of notation) as Γ. In a p–percolation process on Γ, every edge
e ∈ E(Γ) is deleted with probability 1−p, independently. Such a process defines
a probability distribution on subgraphs of Γ, in which each subgraph H ⊂ Γ

is assigned the probability p|E(H)|(1 − p)
|E(Γ)|−|E(H)|

, where | · | denotes the
cardinality of a set. Later we informally refer to edges of H as ‘p–percolated’.

For constants ρ, α, and p between zero and one, we let L(ρ, α, p) denote the
collection of finite graphs Γ, such that a random subgraph H ⊂ Γ as above will
have a connected component joining ρ|Γ| of their vertices, with probability at
least α.

Let ρ and α be fixed, and let Γ be a finite graph. Define the critical probability
pc(Γ) as follows:

pc(Γ) = pc(Γ; ρ, α) := inf
{
p : Γ ∈ L(ρ, α, p)

}
.

From monotonicity of the percolation, Γ ∈ L(ρ, α, p) for all 1 ≥ p > pc(Γ).
We are interested in conditions which bound the critical probability away

from 1, as the size of graph Γ grows. Benjamini conjectured in [5]:

Conjecture 1. (Benjamini) If Γ is a vertex–transitive graph with n vertices,
and diam(Γ) < n/ logn, then pc(Γ; ρ, α) < 1 − ε(ρ, α).
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As mentioned in the introduction, Cayley graphs are important examples
of vertex–transitive graphs. From this point on, we consider only finite Cayley
graphs.

Let G be a finite group and let S = S−1 be a symmetric set of generators.
A graph with vertices g ∈ G and edges (g, g ·s), s ∈ S is called the Cayley graph
Γ(G, S) of the group G with generating set S.

Definition 2. Suppose s1, . . . , sn are generators of a finite abelian group G,
and let ai be the order of si. We say that s1, . . . , sn is a Hall basis for G if the
products si1

1 · · · sin
n are distinct for all n–tuples (i1, . . . , in), where 0 ≤ ik < ak.

The following result establishes Benjamini’s conjecture for all Cayley graphs
of abelian groups whose generating sets are Hall bases:

Theorem 3. For any constants ρ and α between 0 and 1, there is a constant ε =
ε(ρ, α) > 0, such that for every Cayley graph Γ = Γ(G, S) of any finite abelian

group G and Hall basis S satisfying diam(Γ) < |G|
log |G| , we have pc(Γ; ρ, α) < 1−ε.

If the number of commuting generators is large in proportion to the diameter
of the graph, for each Cayley graph in a collection, we again can bound the
critical probability away from one. Precisely, let Γn = Γ(Gn, Rn) be a sequence
of Cayley graphs with diameters dn = diam(Γn). For each s ∈ Rn, let Tn(s) =
{r ∈ Rn : [r, s] = 1}.

Theorem 4. If dn → ∞ as n → ∞, and each |Tn(s)| ≥ 4 log dn, then there
exists ε > 0 such that pc(Γ(Gn, Rn); 2

3 , 1
2 ) ≤ 1 − ε for all n.

Examples satisfying the conditions of Theorem 4 are given in sections 3
and 8.

Without information about the structure or the critical probability of G/H ,
it still may be possible to bound the critical probability of G if the index of H
in G is not too large.

Theorem 5. (Reduction Theorem) Let Γ = Γ(G, S) be a Cayley graph
of a finite group, let H / G be a normal subgroup, and let ρ and α be positive
constants with ρ, α < 1 and ρ > 1

2 . Suppose that R = H ∩ S generates H, and
write pc = pc(Γ(H, R); ρ, α) for the critical percolation of the Cayley graph of
this subgroup. Suppose p > max( 1√

2
, pc

)
. There exist constants β = β(ρ) < 1,

η = η(α), and N = N(ρ, α), so that if α > β and [G : H ] > N , and

(
ln [G : H ] + η

)
[G : H ] ≤ (2ρ − 1) |H | (1)

we have pc(Γ(G, S); ρ, α) ≤ p.

The Reduction Theorem can be applied iteratively to groups with a compo-
sition series. Suppose we have

{1} = G0 / G1 / . . . / G`,
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and for each i > 0, equation (1) is satisfied for G = Gi+1 and H = Gi. If
we have generating sets Si ⊂ Gi with Si ⊂ Si+1 for all i, then we may bound
pc(Γ(G`, S`); ρ, α) ≤ pc(Γ(G1, S1); ρ, α), under the assumptions on ρ and α in

the Theorem, supposing pc(Γ(G1, S1)); ρ, α) >
√

2
2 . See Section 8 for an example

of such an application.
We prove these theorems in the sections that follow, and conclude with a

few examples and open problems.

2 Basic Results

Large components in finite graphs are the analogues of infinite clusters in infinite
graphs. The Benjamini conjecture appears to be inspired by Grimmett’s The-
orem (see, e.g., [13], pages 304–309), which guarantees the existence of infinite
clusters in certain subsets of the square lattice.

Theorem 6. (Grimmett) Let f be a function so that f(x)
log x → a as x → ∞,

for some positive constant a. Let G(f) denote the region in the positive quadrant
of the square lattice under the function f(x). There exists p < 1 so that this
region has an infinite component after p–percolation almost surely.

The following lemma is a close version, though not a direct corollary, of the
theorem. We will prove it, and use the lemma in our proof of Theorem 3.

Lemma 7. Let Γ be an m × n box within the square grid, and let ρ, α < 1
and a ∈ R

>0 be constants. Then there exists ε = ε(ρ, α, a) > 0 such that if
n ≥ m > a log n, we have pc(Γ; ρ, α) < 1− ε.

The following counting lemma provides one tool with which to bound the
critical probability of a vertex transitive graph. It is used in the proof of Theo-
rem 4.

Proposition 8. Let Γ be a vertex transitive graph undergoing p–percolation.
Distinguish a vertex z. Suppose that there are constants 0 < τ, ρ < 1 such
that for every vertex v ∈ Γ, the probability that z lies in the same connected
component as v after percolation is at least τ +ρ− τρ. Then the probability that
z belongs to a configuration of size at least ρ|Γ| is at least τ .

Proof: We prove the contrapositive: If the probability that z is in a compo-
nent of size smaller than ρ|Γ| is at least 1−τ , then there exists a vertex x whose
probability of being in a different component than z is at least 1 − τ − ρ + τρ.

For each vertex v ∈ Γ, let m(v) denote the probability that v is connected
to z after percolation. Then

∑

v∈Γ

m(v) ≤ τ |Γ| + (1 − τ)ρ|Γ| (2)

Indeed, even if all the graphs with ρ–size connected component were entirely
connected, they would not contribute more than τ |Γ| to the sum, because such
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graphs occur with probability no more than τ . This gives the first term. The
remaining graphs contribute to m(v) for no more than ρ fraction of the vertices.
This gives the second term. Therefore, some vertex v must have m(v) ≤ τ +
ρ − τρ. �

Example 9. Let ρ = 2/3 and τ = 1/2 in Proposition 8, and Γ = Γ(G, S)
be a Cayley graph undergoing p–percolation. Distinguish a vertex x ∈ Γ. If
every g ∈ Γ is connected to the identity with probability at least 5/6, then the
probability that x belongs to a configuration of size at least (2/3)Γ is at least
1/2. We use these special values to simplify the calculations that follow.

We conclude this section with the following well–known bound, which we
will use repeatedly throughout what follows.

Theorem 10 (Chernoff). (See, e.g., [8].) Let Xi, i = 1, . . . , n0, be inde-
pendent Poisson trials, with outcomes 1 and 0 with probabilities p0 and 1 − p0

respectively. Set X =
∑n0

i=1 Xi and µ0 = E [X ] = n0p0. Then for every δ0 > 0,
the following bound holds:

Pr (X < (1 − δ0)µ0) < e−
µ0δ2

0
2

3 Commuting Generators

In this section, we prove Theorem 12, which generalizes Theorem 4 from the
introduction. The following example illustrates our technique in a particularly
simple case.

Let Γ = Γ(Sn, Rn) be the Cayley graph for the symmetric group, with
Rn = {(1, 2), (2, 3), . . . , (n−1, n)} the Coxeter transpositions. We may bound
the critical probability of this Cayley graph using an idea that applies to any
sequence of groups with enough generators and short disjoint relations.

Proposition 11. There exists ε > 0 such that for all n, pc(Γ(Sn, Rn); 2
3 , 1

2 ) ≤
1 − ε.

Proof: By our example following Proposition 8, it suffices to show that
every element g ∈ Sn remains connected to the identity 1 with probability at
least 5/6.

Let d be the diameter of Γ(Sn, Rn); we have d =
(
n
2

)
. Fix a path from 1

to g of length no more than d. Some edges of this path may be deleted by
percolation.

Let us consider how to get around a deleted edge. Say the deleted edge joins
a vertex x to (i, i + 1)x. Observe that there are at least n− 4 generators of the
form (j, j + 1) that commute with (i, i + 1). Any of these generators allows
us to replace the edge from x to (i, i + 1)x by the three–edge sequence from x
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given by the word (j, j + 1)(i, i + 1)(j, j + 1). Under p–percolation, each such
three–edge detour is unbroken with probability p3, and since they are disjoint

from each other, the probability that all n − 4 detours break is (1 − p3)
n−4

.
Even if every edge of the original path from 1 to g is deleted, we can find

unbroken detours in this way around all the deleted edges with probability at

least 1 − d(1 − p3)
n−4

. Therefore, if

d(1 − p3)
n−4

<
1

6
,

the proposition is proven. The left hand side goes to zero as n goes to infinity
for every p = 1 − ε. �

We can generalize this result for other sequences of Cayley graphs as follows.
Let G be a finite group and R be a set of generators. Consider a relation of

the form r = s1 · · · sm, where si ∈ R. We say that its length is m. Two relations
r = s1 · · · sm and r = t1 · · · tn are disjoint if, viewed as paths around the edge
from e to r, they share no edges.

Theorem 12. Let Γn = Γ(Gn, Rn) be a sequence of Cayley graphs with diam-
eters dn = diam(Γn). Suppose that dn → ∞, and that there is a constant C
such that for all n and all s ∈ Rn, there are at least 2 log dn disjoint relations
for s, each having length no more than C. There exists ε > 0 such that for all
n, pc(Γ(Gn, Rn); 2

3 , 1
2 ) ≤ 1 − ε.

Proof: As above, we count disjoint detours around an edge {a, b} ∈ Γ. For
simplicity, we may assume a = 1 so that b ∈ S.

For each relation b = s1 · · · sn, we consider the detour that replaces the
edge {1, b} with the edges {1, s1}, {s1, s1s2}, . . . , {s1s2 · · · sn−1, b}, and apply
Proposition 8 to obtain our result. Consider a path of length at most dn from 1
to x. Apply Theorem 10 to a p–percolation process on this path, with δ0 = 1

2

and µ0 = pdn. With probability 1 − e−
pdn
8 , at most δdn edges of the path

are deleted, where δ = 1 − p
2 . For each of these deleted edges {a, ar}, we have

constructed at least 2 log dn disjoint detours of C edges. The probability that all

of these are broken is no more than (1 − pC)
2 log dn . Thus, the total probability

we cannot patch the path from 1 to x with our detours is no more than

e−
pdn
8 + δdn(1 − pC)

2 log dn
(3)

If p satisfies pC > 1
2 , then δdn(1 − pC)

2 log dn
< δdn

d2
n

. Since dn → ∞ as n → ∞,

we have e−
pdn
8 → 0. Increase p so that Γ(Gn, Rn) has a large component in

each of the finitely many graphs where the expression (3) is greater than 1
6 . �

Proof of Theorem 4 Take a maximal subset T ′
n(s) ⊂ Tn(s) so that r ∈

Tn(s) ⇒ rs /∈ Tn(s). Then |T ′
n(s)| ≥ 1

2 |Tn(s)|, and the commutation relations
between s and the elements of T ′

n(s) are disjoint. Each commutation relation
has length C = 3. Now apply Theorem 12. �
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4 An Intersection Lemma

We will need the following lemma in the proof of the Reduction Theorem.
Let Γ = Γ(H, R) be the (unpercolated) Cayley graph of a group H with

generating set R. We call a subset of H connected if the induced subgraph of
the corresponding set of vertices in Γ is connected. Let A be the set of connected
subsets of H having cardinality exactly ρ|H |. Let µ0 be the probability that
Γ has a ρ|H |–sized component after p–percolation. If such a large component
exists, choose, uniformly at random, a subset of ρ|H | vertices of H that is
connected after percolation, and call it A.

For X ∈ A, let µX be the probability that when Γ(H, R) is percolated, a
ρ|H |–sized component exists and A = X . Then X → µX

µ0
defines a probability

distribution on A.

Lemma 13. Let X be any fixed subset of H, and 0 < γ < ρ. Then

PrY ∈A(|X ∩ Y | ≥ γ|X |) ≥ 1 − η where η =
1 − ρ

1 − γ
.

Proof: We say that two elements Y, Y ′ ∈ A are equivalent if Y = Y ′x for
some x ∈ H , and write A/H for the set of equivalence classes. Because Cayley
graphs are vertex transitive, for any A ∈ A and g ∈ H we have PrY (A = Y ) =
PrY (A = Y g). Consequently,

PrY

(
|X ∩ Y | = n

)
=

∑

Ỹ ′∈A/H

PrY

(
|X ∩ Y | = n |Y ∈ Ỹ ′

)
· PrY

(
Y ∈ Ỹ ′

)

=
∑

Ỹ ′∈A/H

Prg∈H

(
|X ∩ Y ′g| = n

)
· PrY

(
Y ∈ Ỹ ′).

Here, Y ′ denotes any representative in A of the equivalence class Ỹ ′. Therefore,
to show that PrY (|X∩Y | ≥ γ|X |) ≥ 1−η, it suffices to show for all fixed Y ∈ A
that Prg∈H(|X ∩ Y g| ≥ γ|X |) ≥ 1 − η.

Fix Y ∈ A. We have
∑

g∈H

|X ∩ Y g| = |X ||Y |. (4)

Let η be the fraction of g ∈ H for which |X ∩ Y g| < γ|X |. Substituting this
condition into equation 4 for these values of g, and |X ∩Y g| ≤ |X | for the other
values of g, we obtain

γ|X | · η|H | + |X | · (1 − η)|H | ≥ |X | |Y |. (5)

Using |Y | = ρ|H |, equation 5 becomes

γη + 1 − η ≥ ρ (6)

which shows

η ≤
1 − ρ

1 − γ
(7)

as desired. This proves Lemma 13. �
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5 Proof of Reduction Theorem

Consider any p satisfying the hypothesis of the Theorem. Our analysis consists
of three steps, in which we demonstrate that:

1. With probability 1 − ε1, there exist at least α2 [G : H ] cosets with a con-
nected component of size at least ρ|H |. In this event, we say that step 1
succeeded, and the cosets with the large component are called good cosets.
Using the outcome of this step, another random process defines sets of
ρ|H | vertices within every coset, which we call the good part of the coset.
The complementary subset in Hgi is called the bad part.

2. Suppose step 1 succeeded. We show that the good parts of all the good
cosets are connected to each other, with probability 1− ε2. In this event,
we say that step 2 succeeded, and observe that Γ will have a connected
component of size at least ρα2|G|.

3. Suppose step 1 and 2 succeeded. We show that more than (ρ − ρα2)|G|
vertices that are in the bad part of some coset are attached by an edge to
the good part of some good coset, with probability 1 − ε3. In this event,
we say that step 3 succeeded, and observe that Γ has been p–percolated
with a connected component of size ρ|G| remaining.

In the sequel, we divide the p–percolation process into percolation on edges
within the same coset, which we address in step 1, and percolation on edges
between distinct cosets, which we address in steps 2 and 3. These percolations
are independent. Therefore, we regard percolation on edges between distinct
cosets as occurring “after” the definition of good cosets in step 1.

The theorem will follow once we compute values of β, η, and N as in the
statement of the theorem that guarantee that ε1 + ε2 + ε3 < 1 − α.

Step 1. Let n = [G : H ], and write G/H = {Hgi}
n
i=1. Consider each coset

as a subgraph of Γ. Prior to percolation, each coset is isomorphic as a graph
to Γ(H, R). Because H is a normal subgroup, the only edges in Γ that join two
vertices of a single coset in Γ come from generators in R. Our assumption implies
that after the edges of each coset are percolated, each coset has a connected
component of size at least ρ|H |, with probability at least α. Moreover, the
occurrences of these large components are mutually independent. Call a coset
with such a large component a “good coset.” Applying the Chernoff bound with

p0 = α, n0 = n, and δ0 = 1 − α, we find that with probability 1 − e−
α(1−α)2n

2 ,

there are at least α2n good cosets. Thus ε1 = e−
α(1−α)2n

2 .
Let A be the set of connected subsets of H (before percolation) having

cardinality exactly ρ|H |. For every good coset Hgi, choose a ρ|H |–size subset
of the vertices of Hgi that is connected after percolation uniformly at random,
and call it Ai. The assumption that Hgi is good ensures that at least one such
choice can be made.

Let g1 = 1 be the identity element, and let µ0 be the probability that the
identity coset is good. For X ∈ A, let µX be the probability that when Γ(G, S)
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is percolated, the identity coset H is good and A1 = X . Then X → µX

µ0
defines

a probability distribution on A. For every coset Hgi that is not good, select
any subset Ai from A · gi according to this distribution. Thus, we have selected
a set of vertices Ai of cardinality ρ|H | for every coset of G/H .

In either case, let the set Bi be the complement of Ai in Hgi. We will refer
to Ai as the good part of Hgi. For X ∈ A, we have Pr(Ai = X |Hgi is good) =
Pr(Ai = X |Hgi is not good).

Step 2. Let pi be the natural map G → G/H . Fix a spanning tree on
the (unpercolated) Cayley graph Γ(G/H, π(S)), and choose the root to be a
good coset. Although the parent of a good coset need not be a good coset, we
can take parents recursively until we reach one that is good. We call this the
good parent of the given coset. We claim that with probability at least 1 − 1

n ,
every good parent is no more than m = 2 log n levels higher in the tree. Indeed,
the probability that any particular coset is good is at least α > 1

2 . Enumerate
the vertices of Γ(G/H, π(S)) as HGj , for j = 1, . . . , n. For a fixed Hgj , the
probability that Hgj has its good parent more than m levels higher in the tree
is no more than (1 − α)

m
< 1

2m = 1
n2 . (If the depth of Hgj is less than m, then

the tree’s root, if nothing closer, is its good parent.) Thus, the probability that
there exists a coset Hgj whose good parent is too high in the tree, is no more
than

∑n
j=1

1
n2 = 1

n . So, suppose that every Hgj has its good parent no more
than m levels up.

The good parts of all the good cosets will be connected after percolation
if each one remains connected to that of its good parent. Suppose Hgj is
the good parent of Hgi. Then gj = gisi1 · · · sir

for some string of generators
si1 , . . . , sir

∈ S where Hgisi1 is the parent of Hgi, etc. We have r ≤ m. Right
multiplication by si1 · · · sir

gives a bijection from Hgi to Hgj . By the inclusion–
exclusion principle, at least (2ρ − 1)|H | good points of Hgi hit the good part
of Hgj . Therefore, in order for the good part of Hgi to fail to be connected
to the good part of Hgj , we would need each of the (2ρ − 1)|H | paths of the
form x, xsi1 , . . . , xsi1 · · · sir

to break. Since these paths are all disjoint, the

probability that they all break is no more than (1 − pr)(2ρ−1)|H|. Let P1 be the
probability that some good coset fails to have its good part connected to that
of its good parent. Then

P1 ≤ n(1 − pm)
(2ρ−1)|H|

≤ n(e−pm

)
(2ρ−1)|H|

≤ n(e−p2 log n

)
(2ρ−1)|H|

≤ n(e−(2ρ−1)|H|p2 log n

)

≤ ne−
(2ρ−1)|H|

n
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where the last inequality applies the hypothesis p > 1√
2
. If we take η(α) =

ln 5
1−α , then the hypothesis relating [G : H ] and |H | implies

(
ln

5

1 − α
+ ln n

)
n ≤ (2ρ − 1) |H |

so that the failure probability P1 ≤ 1−α
5 .

Therefore, Step 2 succeeds with probability at least 1 − ε2, where ε2 <
1
n + ne−

(2ρ−1)|H|
n .

Step 3. We build a big forest in G/H as follows. Fix a generator s1 ∈ S−R,
and consider the cyclic subgroup C1 of G generated by s1. The subgroup C1

acts on G/H by right multiplication. In each orbit that includes a good coset,
fix one particular good coset; let Hx1, . . . , Hxk be the good cosets chosen. Each
orbit of C1 on G/H has the same cardinality; indeed, if gsm

1 ∈ Hg for some
g ∈ G, then sm

1 ∈ g−1Hg = H , so g′sm
1 ∈ g′H = Hg′ for any g′ ∈ G. Let m be

the cardinality of each orbit.
For each good coset Hg in G/H such that Hgs1 6= Hxi for any i ∈ {1, . . . , k},

add the vertices Hg and Hgs1 to the big forest, and add a directed edge from
Hgs1 to Hg. There are no cycles in the big forest, because every edge connects
two vertices that are adjacent within an orbit that is a cycle, and the edge of
that cycle between Hxis

−1
1 and Hxi is not in the forest. Each tree in the big

forest is a directed path, and we consider the vertex that is a target but not a
source of an edge to be the root of the tree. Because the root of a tree is the
target of an edge, it is a good coset. Each tree in the big forest contains at least
two vertices, because a vertex is added only when it is the source or target of
an edge.

We call the sources of edges in the big forest linkable cosets, and the targets
established cosets; each edge points from a linkable coset Hgj to an established
neighbor Hgi = Hgjs

−1
1 . Every established coset is a good coset. At most

k of the good cosets are not vertices in the big forest, but the good cosets
Hx1, . . . , Hxk are roots of trees in the big forest, so at least half of the good
cosets belong to the big forest. Since every path in the good forest contains at
least two vertices, and every vertex of a path except its root is linkable, at least
1
4α2n linkable cosets exist.

We claim that the sizes of the intersections |Bj ∩Ais1| for the linkable cosets
Hgj are mutually independent. Indeed, let I = {j1, . . . , jr} ⊂ {1, . . . , n} be a
set of indices of linkable cosets. Let i1, . . . , ir be the indices of the established
neighbors of the cosets indexed by j1, . . . , jr respectively. We argue by induction
on r = |I | that for any values x1, . . . , xr,

Pr(|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr
∩ Air

s1| ≤ xr) =

r∏

l=1

Pr(|Bjl
∩ Ail

s1| ≤ xl).

Here, each Pr without a subscript means the probability over the selection of
Ai inside Hgi for all i, as defined in step 1.

11



If r = 1, there is nothing to prove. If r > 1, reorder I so that the distance of
Hgir

from the root of its tree is maximal. Then Hgir
cannot be the established

neighbor of any coset indexed by I . Thus ir 6= jl for all l. Hence

Pr
(
|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr

∩ Air
s1| ≤ xr

)

= Pr
(
|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr−1 ∩ Air−1s1| ≤ xr−1

)

× PrX∈A
(
|Bjr

∩ Xgjr
| ≤ xr

)

= Pr
(
|Bj1 ∩ Ai1s1| ≤ x1, . . . , |Bjr−1 ∩ Air−1s1| ≤ xr−1

)

× Pr
(
|Bjr

∩ Air
s1| ≤ xr

)

=

r∏

l=1

Pr
(
|Bjl

∩ Ail
s1| ≤ xl

)

applying the inductive hypothesis. This shows the mutual independence of the
random variables |Bj ∩ Ais1|.

For each j, apply Lemma 13 to X = Bj with γ = 1
2 and η = 2(1 − ρ).

Using the Chernoff bound with δ0 = 1
2 and p0 = 2ρ − 1 on the n0 = 1

4α2n
linkable cosets, we find that with probability at least 1− υ1, there exist at least
1
4 (ρ − 1

2 )α2n linkable cosets Hgj such that |Bj ∩ Ais1| > 1
2 (1 − ρ)|H |, where

υ1 = e−
(ρ− 1

2
)α2n

16 .
After step 3, the 1

2 (1− ρ)|H | vertices of each of these linkable cosets attach,
independently with probability p, to the large connected component of size
ρα2|G| we found in step 2. Again by the Chernoff bound, using p0 = 1

2 < p,
δ0 = 1

2 , and n0 = 1
8 (ρ− 1

2 )(1−ρ)α2|G|, this adds at least n0

4 vertices to the large
component from bad parts of linkable cosets, with probability at least 1 − υ2,

where υ2 = e−
(ρ− 1

2
)(1−ρ)α2 |G|

128 .
Altogether, given that step 1 and step 2 succeeded, there is a connected

component of size

ρα2|G| +
n0

4
(8)

remaining after step 3 with probability at least 1−ε3, where ε3 = υ1 +υ2. Write

ω = n0

4α2|G| . If α >
√

ρ
ρ+ω , then expression 8 describes a component of size at

least ρ, and step 3 succeeds with probability at least 1 − ε3.
To ensure that ε1 + ε2 + ε3 < 1 − α, we require n > 128η

(ρ− 1
2 )(1−ρ)α2(1−α)2

and apply the hypothesis relating n and |H |. This proves Theorem 5, with

β =
√

ρ
ρ+ω , η = ln 5

1−α , and N = 128η
(ρ− 1

2 )(1−ρ)α2(1−α)2
. �

6 Semidirect Products

Recall the construction of a semidirect product. Let K and H be finite groups.
An action of K on H is a homomorphism ϕ : K → Aut(H). Denote hk =
((ϕ(k))(h). The semidirect product of H and K, denoted H o K, is the group

12



defined on the set of ordered pairs (h, k) ∈ H ×K with multiplication given by

(h1, k1) · (h2, k2) = (h1 · h
k1
2 , k1 · k2) .

The homomorphisms h → (h, 1) and k → (1, k) identify H and K with sub-
groups of G.

Theorem 14. Let constants ρ and α satisfy the conditions of the Reduction
Theorem. There exists a constant C so that if G = H o K, |H | > C, |K| > C,
and p > 0, and H and K have generating sets R and S for which Γ(H, R) and
Γ(K, S) belong to L(ρ, α, p), then Γ(G, R ∪ S) ∈ L(ρ, α, p).

Proof: We may write the elements of G uniquely as g = hk where h ∈ H
and k ∈ K. Given any h ∈ H , let Kh be the subgraph {hk : k ∈ K}, with edges
joining hk to hks for s ∈ S. For k ∈ K, let Hk be the subgraph {hk : h ∈ H},
with edges joining hk to hkr for r ∈ R. The product structure in H o K is
given by

h1k1 · h2k2 = (h1(k1h2k
−1
1 ))(k1k2)

Examining this product when k2 = 1 or h2 = 1, we see that the sets Hk and
Kh are closed under right multiplication by elements of H or K, respectively.

Clearly, for every h ∈ H , the graph of Kh is isomorphic to the Cayley graph
of K. For each k ∈ K, the graph of Hk is isomorphic to the Cayley graph
of H , under the isomorphism (khk−1)k = kh → h. Indeed, if h1r = h2, then
(kh1)r = k(h1r) = kh2. Thus, each Kh and each Hk has a component of size
at least ρ|K| or ρ|H | with probability at least α independently.

First, assume that |H | ≤ |K|. Proceed as in the proof of the Reduction The-
orem, with the following change: We show that Step 2 succeeds with probability
1 − ε2, where

ε2 <

(
|H |

2

)
(2(1 − ρ))

a′′|K|
+ e−

α(1−δ)2|H|
2 . (9)

The proof of this estimate follows.
We regard the sets Hk as the “columns” and the sets Kh as the “rows” of the

Cayley graph G. If some column Hk (or row Kh) has a connected component
of size ρ|H | (or ρ|K|) considering only the generators in R (or in S), we call
the column (or row) “good.” In this event, we choose a subset of size exactly
ρ|H | (or ρ|K|) uniformly at random among those that remain connected after
percolation, and call this subset the “good part.” Step 2 succeeds if the good
parts of all good columns are connected.

At the end of Step 1, we established that with probability at least 1 − ε1,
there were at least α2|K| good columns. Suppose this to be the case. Pick δ < 1
so that 2αδ + 2ρ > 3. Put a = αδ. The Chernoff bound (Theorem 10) with
p0 = α, n0 = |H |, and δ0 = 1−δ, shows that at least a|H | good rows exist, with

probability at least 1 − e−
α(1−δ)2|H|

2 . All good columns form a single connected
component in the Cayley graph of G, with high probability. Indeed, the good
part of any good column intersects at least (a − (1 − ρ))|K| good rows. Let

13



a′ = a − (1 − ρ). The good parts of any pair of good columns intersect at least

(2a′ − 1)|K| = (2(a − (1 − ρ)) − 1)|K|

= (2a + 2ρ − 3)|K|

of the same good rows. Let a′′ = 2a + 2ρ − 3. If both columns touch the
good part of such a good row, then their large components are connected in the
Cayley graph of G. The probability that for some pair of good columns, this
fails to happen in every such good row is no more than

(
|H |

2

)
(2(1 − ρ))

a′′|K|
.

Otherwise, the good parts of all good columns are connected in Γ(G, R∪S). This
proves inequality 9, whose right hand side goes to zero as |K| → ∞, assuming
|H | ≤ |K|.

Let ε1 and ε3 be as in the proof of the Reduction Theorem. For C sufficiently
large, ε1 + ε2 + ε3 < 1 − α. This proves Theorem 14 in the case |H | ≤ |K|.

In the case where |H | > |K|, we may proceed in the same manner, with the
symbols H and K interchanged. Because K might not be a normal subgroup
of G, the Reduction Theorem does not formally apply. However, the proof only
uses the fact that subgraph Kh is isomorphic to the Cayley graph of K, which
we verified above. �

7 Cayley Graphs of Abelian Groups

7.1 Correlation Length

Our proof resembles that of Theorem 6 in Grimmett [13]. To follow it, we must
introduce some notation. We write Pp(A) for the probability of an event A in a
p–percolation process on the square lattice. Let B(n) be a box inside the square
lattice, centered at the origin, and with side length 2n. Let Pp(0 ↔ ∂B(n))
denote the probability that there exists an open path from 0 to some point on
the boundary of B(n) after p–percolation on the edges of B(n). Let ξ : (0, 1

2 ) →
(0,∞) be the correlation length, i.e. the continuous, increasing function defined
by the property that

ln Pp(0 ↔ ∂B(n))

− n
ξ(p)

→ 1

as n → ∞. The function ξ converges to 0 as p → 0 and converges to ∞ as
p → 1

2 (see, e.g., [13]).
A p–percolation process on the square lattice Z

2 can be viewed a (1 − p)–
percolation process on the dual lattice, whose points are ordered pairs of the
form (a + 1

2 , b + 1
2 ) for a, b ∈ Z, and whose edges run from (a + 1

2 , b + 1
2 ) to

(a + 1
2 ± 1, b + 1

2 ± 1). Under this identification, an edge of the dual lattice is
deleted (“closed”) if and only if the unique edge of the square lattice intersecting
it is not deleted (“open”).

14



Lemma 15. Let a be a positive real number, and k be a positive integer, and
p > 1

2 . Let Dk be the box of the dual lattice with center (k+ 1
2 , 1

2 ) and side length
2a log k. Let Ek be the event that the vertex (k + 1

2 , 1
2 ) is joined by a closed path

of the dual to a vertex on the surface ∂Dk of Dk. Then

log Pp(Ek)

− a
ξ(1−p) log k

→ 1

as k → ∞.

This lemma follows immediately from the definitions.

7.2 Proof of Lemma 7

Put γ = 1−α
2 , and consider the function

f(x) = −a + a log x.

By Theorem 6, there exists ε1 > 0 such that for p > 1−ε1, the subgraph G(f) of
the square lattice has an infinite component after p–percolation with probability
more than 1 − γ.

Given a positive integer x, say that “there exists an infinite path from x in
G(f)” if there exists y such that (x, y) belongs to an infinite open path in G(f).
In this event, for any x′ > x, there exist y and y′ such that (x, y) is connected
to (x′, y′) by an infinite open path in G(f)∩ ([x, x′ ]×Z). Choose N1 so that for
p > 1 − ε1, if G(f) has an infinite component, then the probability that there
exists an infinite path from N1 in G(f) is at least 1 − γ.

For a p–percolation event on the square lattice, let θ(p) denote the proba-
bility that the origin resides in an infinite open cluster. Theorem 8.8 of [13]
shows that θ is a continuous function on the interval (1/2, 1]. In particular,
limp→1 θ(p) = 1.

Suppose δ < 1 and pδ > 1/2. Let B(k) be the box [0, k] × [0, k] inside
the square lattice. Let Xδ(k) denote the event that this box contains an open
cluster of size at least δθ(p)|B(k)|, with the property that, for some x1 and x2,
there exists an open path from (x1, 0) to (x2, k) inside this cluster. (We call
such a path an up–down crossing of B(k) inside the cluster.) Theorem 7.61 of
[13] says that limk→∞ Pp(Xδ(k)) = 1.

Choose ε, δ, and ν < 1 so that ε < ε1, and for p > 1− ε, we have νδθ(p) > ρ.
Fix N2 so that for k > a logN2, we have

νPp(Xδ(k))δθ(p) > ρ (10)

and
e−kPp(Xδ(k))(1−ν)2 < γ. (11)

Let N be the maximum of N1 and N2. Finally, decrease ε so that for the finitely
many m by n boxes Γ with a logn ≤ m ≤ n ≤ N , we have pc(Γ; ρ, α) < 1 − ε.
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We show that our choice of parameters satisfies the required properties in
the special case where m = a log n. We only need to treat the case where n > N .
Embed Γ in the square lattice as the box [n, 2n] × [0, m]. With probability at
least 1 − γ, there is an infinite path C in G(f) from n. Suppose this event
occurs.

Define events X
(x,y)
δ (k) for the boxes B(k) + (kx, ky) as Xδ(k) was defined

for B(k). For fixed k, the events X
(x,y)
δ (k) and X

(x′,y′)
δ (k) are independent

if (x, y) 6= (x′, y′). Let r = d n
a log ne, and consider the events X

(r−1,0)
δ (n), . . .,

X
(2r−1,0)
δ (n). By equation 11, with probability at least 1−γ, at least ρ

δθ(p) (r+1)

of these events occur. If the event X
(x,0)
δ (n) occurs, it contributes δθ(p)|B(n)|

vertices to the large cluster of Γ, because the up–down crossing within B(n) +
(nx, 0) will intersect the long path C. Using equation 10, we conclude that for
p > 1− ε, with probability 1− 2γ > α, the box [n, 2n]× [0, a logn] has an open
cluster of size at least ρan log n.

We summarize what we have shown so far as follows:

Lemma 16. Fix a ∈ R
>0. For every positive integer n, let Γn be the box

[0, n]× [0, a logn] inside the square lattice. Given α0 and ρ0, there exists ε0 > 0
so that for every n and every p > 1 − ε0, the probability that Γn has an open
cluster of size at least ρ0|Γn| containing a left–right crossing after p–percolation
is at least α0. �

Now we handle the case where a log n < m < n.
Choose ρ0, α0, and ν0 so that ν0α0ρ0 > ρ, and take ε0 as in Lemma 16.

Put γ0 = 1−α
2 . Choose a positive integer S so that

(1 −
1

S
)ν0α0ρ0 > ρ (12)

and
e−Sα0(1−ν0)2 < γ0. (13)

There exists an integer N0 so that for n > N0, we have n
a log m > S. Fix

m and n with n > N0, and embed the m by n box in the square lattice as
Γ = [n, 2n] × [0, m] as before.

For 1 ≤ k ≤ bSc, let Ek be the event that the box [n + (a − 1)k log m, n +
ak log m] × [0, m] has an up–down crossing through a ρ0–sized component. To-

gether, these boxes cover at least
(
1− a log m

n

)
|Γ| >

(
1 − 1

S

)
|Γ| of the box

Γ. By Lemma 16, Pp(Ek) ≥ α0. By equation 13 and the Chernoff bound
(Theorem 10), with probability at least 1 − γ0, at least ν0α0b

n
a log mc of the

events Ek occur. Take ε > 0 such that ε < ε0 and pc(Γ; ρ, α) > 1 − ε when
a log n ≤ m ≤ n ≤ N0, and so that for p > 1 − ε, G(f) has a long path from
N0 with probability at least 1 − γ0. Altogether, for such p, with probability at
least α, there is a long path connecting the large components from each of the
events Ek into a component of size at least ν0α0(1 − 1

S )ρ0|Γ| > ρ|Γ| in Γ. This
is the desired result. �
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7.3 Proof of Theorem 3

We wish to embed the Cayley graph Γ = Γ(G, S) of an abelian group G into a
two–dimensional box, so that we can apply Lemma 7.

The generators s1, . . . , sn in the Hall basis define a homomorphism ϕ : Z
n →

G, given by
ϕ(x1, . . . , xn) = sx1

1 · · · sxn
n .

Let the generators have orders a1, . . . , an. The homomorphism ϕ maps the box
B = [0, a1 − 1] × · · · × [0, an − 1] bijectively onto G. To flatten B into a two–
dimensional box, we will select k dimensions and choose Hamiltonian paths in
the Cayley graphs of a section and a cross section. Unwrapping these Hamil-
tonian paths each into one dimension will produce the desired two–dimensional
box.

We claim that there exists I ⊂ {1, . . . , n} such that
∏

i∈I ai > log |G|
2 and∏

i/∈I ai > log |G|
2 . These constraints will allow us to apply Lemma 7 to

the resulting two–dimensional box. Indeed, choose the smallest k such that

a1 · · ·ak > log |G|
2 . If a1 · · · ak < 2|G|

log |G| , then we may take I = {1, . . . , k}, and

we are done. If k = 1, this inequality is assured by the diameter assumption,

since diam(Γ) = (a1 + · · · + an)/2. If k > 1 and yet a1 · · · ak > 2|G|
log |G| , then

ak > 4|G|
log2|G| > log |G|

2 , assuming |G| is large enough. The diameter condition

ak < 2|G|
log |G| implies that a1 · · ·ak−1ak+1 · · ·an > log |G|

2 , so I = {k} has the

desired property.
Now choose Hamiltonian paths β1 and β2 in boxes B1 =

∏
i∈I [0, ai] and

B2 =
∏

i/∈I [0, ai] (see, e.g., [16]). One can view these paths as maps β1 :
[0, x− 1] → B1 and β2 : [0, y − 1] → B2. Let A be the box [0, x− 1]× [0, y − 1].
Observe that ϕ ◦ (g, h) is a graph homomorphism mapping A bijectively onto
G, so that A is isomorphic to a spanning subgraph of Γ. Therefore, it suffices
to show that A ∈ L(ρ, α, 1− ε). This follows immediately from Lemma 7, since

x and y are each at least log |G|
2 . �

8 Examples

1. Our first example is a hypercube Cn, which is a Cayley graph of the
group Z

n
2 with the usual set of generators R = {r1, . . . , rn}. In this case,

diam(Cn) = n = o( 2n

n ). Therefore, pc(Cn) < 1 − ε for some ε > 0, by
Theorem 3. Of course, this bound is much weaker than pc = (1 + o(1))/n
established in [1].

2. Consider Gn = Sn n Z
n
2 , with the generating set

Rn = {((i i + 1), 0), (id, rj); i = 1, . . . , n − 1; j = 1, . . . , n}

where {r1, . . . , rn} are the usual generators for Z
n. From the previous

example, Proposition 11, and Theorem 14,

pc(Γ(Gn, Rn)) < max
{
pc(Cn), pc(Γ(Sn, Rn))

}
< 1 − ε
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for some ε > 0.

3. Fix a prime power q. Let Gn = U(n, Fq) be the group of n × n upper
triangular matrices over the finite field with q elements, with ones along
the diagonal. Consider the set Ln = {E±

i,j : 1 ≤ i < j ≤ n} of all

elementary transvections E±
i,j with ±1 in position (i, j), ones along the

diagonal, and zeros elsewhere. For each m ≤ n, let Hm be the subgroup
of Gn generated by the E±

i,j with j > i + (n − m) (consisting of matrices
with zero on the first n − m superdiagonals).

For m < n
2 , Hm is isomorphic to F

m(m+1)
2

q . Therefore, pc(Γ(Hm, Ln ∩
Hm)) < 1−ε for some ε that is independent of m and n. For n sufficiently
large and m ≥ n

2 , the subgroup Hm−1 of Hm in Gn will satisfy the index
condition (1), and the Reduction Theorem 5 will show that pc(Γ(Hm, Ln∩
Hm)) < 1−ε for the same ε as before. Since Gn = Hn, this gives a bound
pc(Γ(Gn, Ln) < 1 − ε for a value of ε that is independent of n.

4. Let Gn = B(n, Fq) be the set of upper triangular n by n matrices with
entries in Fq, and let Hn = U(n, Fq). Let Rn be any generating set for
the diagonal subgroup. Then Rn ∪ Ln generates Gn, and equation (1) is
satisfied for large n. The Reduction Theorem 5 gives pc(Γ(Gn, Rn∪Ln)) <
1 − ε.

5. Let Gn = U(n, Fq) and Rn = {E±
i,i+1 : i = 1, . . . , n − 1}. Theorem 4

applies in the same manner as in Proposition 11.

6. Consider Sn with the star transpositions Rn = {ri = (1 i) : i = 2, . . . , n}.
None of these generators commute, so we cannot apply Theorem 4. How-
ever, the short relations (ri rj)

3
= 1 can be used in Theorem 12 to obtain

pc(Γ(Sn, Rn); 2
3 , 1

2 ) < 1 − ε.

9 Concluding Remarks

We are unable to prove the Benjamini conjecture in its full generality, even
for abelian groups. It would be nice to prove the Benjamini conjecture for all
generating sets of finite abelian groups.

In view of the Reduction Theorem, it is important to study simple groups
with small generating sets. For example, any simple group can be generated
by two elements, one of which is an involution (see [12]). The corresponding
Cayley graph may provide interesting test cases for Benjamini’s conjecture.

It is well known (see [3]) that all Cayley graphs Γn of the symmetric group

Sn have a diameter eo(
√

n log n) = o
(

n!
n log n

)
. Proving Benjamini’s conjecture in

these cases is the ultimate challenge for the reader. Even for the generating set
{(1 2), (1 2 · · ·n)

±1
}, we are unable to bound pc away from 1.
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of a k-cube. Combinatorica 2, 1 (1982), 1–7.

[2] Alon, N., Benjamini, I., and Stacey, A. Percolation on finite graphs
and isoperimetric inequalities. math.PR/0207112 (2002).

[3] Babai, L. Automorphism groups, isomorphism, reconstruction. In Hand-
book of combinatorics, Vol. 1, 2. Elsevier, Amsterdam, 1995, pp. 1447–1540.

[4] Babson, E., and Benjamini, I. Cut sets and normed cohomology with
applications to percolation. Proc. Amer. Math. Soc. 127, 2 (1999), 589–597.

[5] Benjamini, I. Percolation on finite graphs. math.PR/0106022 (2001).

[6] Benjamini, I., and Schramm, O. Percolation beyond Zd, many ques-
tions and a few answers. Electron. Comm. Probab. 1 (1996), no. 8, 71–82
(electronic).

[7] Benjamini, I., and Schramm, O. Recent progress on percolation be-
yond Zd. http://www.wisdom.weizmann.ac.il/˜schramm/ papers/pyond-
rep (2000).

[8] Bollobás, B. Random graphs. Academic Press Inc. [Harcourt Brace
Jovanovich Publishers], London, 1985.

[9] Bollobás, B. Random graphs, second ed. Cambridge University Press,
Cambridge, 2001.

[10] Diestel, R., and Leader, I. A conjecture concerning a limit of non-
Cayley graphs. J. Algebraic Combin. 14, 1 (2001), 17–25.
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