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Abstract. Despite the prognostic importance of mitotic count as one of

the components of the Bloom - Richardson grade [3], several studies ([9], [10],

[2]) have found that pathologists’ agreement on the mitotic grade is fairly mod-

est. Collecting a set of more than 4,200 candidate mitotic figures, we evaluate

pathologists’ agreement on individual figures, and train a computerized system

for mitosis detection, comparing its performance to the classifications of three

pathologists. The system’s and the pathologists’ classifications are based on

evaluation of digital micrographs of hematoxylin and eosin stained breast tis-

sue. On figures where the majority of pathologists agree on a classification, we

compare the performance of the trained system to that of the individual pathol-

ogists. We find that the level of agreement of the pathologists ranges from slight

to moderate, with strong biases, and that the system performs competitively

in rating the ground truth set. This study is a step towards automatic mitosis

count to accelerate a pathologist’s work and improve reproducibility.
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1 Introduction

Beginning with Greenough’s 1925 grading system [7], pathologists have at-

tempted to quantify factors that provide a measure of an invasive breast tumor’s

locality and prognosis. From the seven factors in Greenough’s system, Bloom

and Richardson settled on three factors [3], and the 1991 Nottingham revisions

gave more stable definitions to these variables [6]. The grades are widely used

to inform the selection of high–risk treatments, through the information they

provide about survival or the likelihood of distant metastasis.

In light of the critical role of grading, many authors have investigated agree-

ment between pathologists on individual components of the grade ([9], [10], and

[2]). The level of agreement may be reported in Cohen’s Kappa statistic [5],

which equals one in case of perfect agreement and zero in the case of proba-

bililstically independent decisions. The range 0–0.2 is often considered as slight

agreement, 0.2–0.4 as fair, 0.4–0.6 as moderate, 0.6–0.8 as good, and 0.8–1 as

almost perfect.

Meyer’s study of agreement on Bloom–Richardson grading [9] involved groups

of five to seven pathologists, with each group examining 10–23 patients’ slides

of hematoxylin and eosin stained biopsy tissue through an analog microscope.

Agreement on the overall grade was moderate, with κ = 0.50 − 0.59 for the

various groups. The tubularity grade achieved stronger agreement than for the

other components (κ = 0.57 − 0.83). Agreement on the pleomorphism compo-

nent was weakest (κ = 0.27 − 0.50). The range of agreement for the mitotic

grade was κ = 0.45− 0.67.

The NEC e-Pathologist Project aims to provide diagnosis support for anatom-

ical pathology, by providing computerized image analysis for virtual microscopy.

It has released modules for analysis of gastric tissue that are in use in a major

commercial laboratory in Japan. A breast module for hematoxylin and eosin
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stained tissue is under development, to target the least two stable parts of the

Bloom–Richardson grade. For pleomorphism, the system aims to produce out-

put representing carefully measured statistics of nuclear shape. For mitosis, the

system aims to provide a classifier with consistent judgments.

Usage of a computerized mitosis detector could be the continuation of a

line of efforts to devise more stable, prognostically useful guidelines for mitosis

grading. The original Bloom–Richardson system directed that hyperchromatic

nuclei be counted along with true mitotic figures. Cutoffs between grades were

vaguely prescribed. In the Nottingham revision, pathologists were directed in-

stead to avoid hyperchromatic nuclei, apoptotic figures, and pyknosis. Mitotic

figures in prophase were no longer to be counted because agreement was low.

Figures were to be counted in ten high power fields (25X or 40X magnification),

and grading cutoffs were made to depend on the high power field size. Each

high power field was to be taken from the tumor’s periphery.

The rigor of the grade given in clinical practice appears to vary widely. Com-

paring pathologists who performed a quick 30–second impression of ten high

power fields to those who spent 2–3 minutes applying the rules for the WHO

Mitotic Activity Index (MAI), Skaland [11] found that those who followed the

MAI procedure gave grades that were prognostic with two more orders of mag-

nitude in p–value than those who did the quick impression. Some see the need

for even more concrete guidelines. Baak ([1], [12]) attempts to describe figures

to be counted in image analysis terms (loss of nuclear membrane, presence of

“clear, hairy extensions of nuclear material,” etc.). One of the authors (AK)

believes a complete decision tree of such image analysis rules could be drawn.

However, another author (EB) believes that it may be impossible to apply even

such specific guidelines by viewing just one focal plane, because some details

of mitotic figures are recognizable only when focusing up and down with the
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microscope.

Whereas most previous investigations of agreement of mitosis have focused

on the mitotic grade, we examine agreement on individual figures. In the largest

previous such study we found [9], seven pathologists examined 43 potential

mitotic figures. Average pairwise agreement was κ = 0.38.

2 Methods

In the present study, we asked three of the authors (AK, JM, and SW) who are

pathologists actively signing out breast cases, to examine 4,204 potential mitotic

figures. These figures were taken from 2,444 high power fields in 94 breast slides,

stained in hematoxylin and eosin. Tissues were provided by Massachusetts

General Hospital and Tokyo Medical University, and scanned on Hamamatsu

Nanozoomer scanners. At full resolution (40X) the scanners afforded a reso-

lution of 4.39 pixels per micron. Because a random selection of nuclei would

include too many obvious non–mitotic figures, one author selected the candi-

dates manually, intending to obtain figures that were mitotic or worth a closer

look.

Each pathologist examined all 4,204 figures, answering the question “Is this

figure mitosis or not?” with “Yes,” “No,” or “Maybe.” For each pair of pathol-

ogists, we considered the figures where both pathologists committed to a “Yes”

or a “No,” and computed Cohen’s Kappa on this subset. In this way, figures

where the digital image was inadequate for decision should be excluded.

The second part of our investigation concerned the performance of a comput-

erized detector. As discussed above, the description of mitotic figures in terms

of decisions about shape and structure may be complex and unclear. Translat-

ing those verbal directives into manually coded image analysis rules could be

dangerous. Avoiding such a heuristic approach, we developed a detector based
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on machine learning.

In our system, a simple rule that extracts blobs representing nuclei of poss-

sible mitotic figures (and many other nuclei, to be rejected later) establishes a

set of candidates from the digital micrograph of the high power field (HPF).

Machine learning is applied in three phases. One phase applies a support vector

regression [13], which remaps the color palette of the HPF to normalized values.

The next phase is a convolutional neural network [8], applied at each extracted

blob. The convolutional neural network contributes a feature to a feature vector,

which also contains many other measurements regarding the shape, color, mass,

and texture of the blob and its neighborhood. In the final phase, a support

vector machine [13] uses the feature vector to classify the area around the blob

as a mitotic figure or not.

Machine learning algorithms learn classification rules by taking a set of train-

ing data where features can be measured and true classifications for each ex-

ample are known. Using the training data, they find parameters to be used for

classification by solving a minimization problem. The learned parameters can

then be applied to new examples, where the features can be measured but the

classification is not given, to predict the correct classification.

Applying machine learning thus requires that we divide our data into a set

for training and a set for testing. We reserved 799 mitotic figures for testing

and used the remainder for developing our algorithm. Figures for testing and

figures for training never came from the same slides. This careful separation

ensures that our test figures reflect tissues totally unseen during development.

Training the machine also requires that we assign one ground truth classifi-

cation to each figure in the training set, but we have three classifications—one

from each pathologist. We aggregated the pathologists’ decisions using majority

voting. Namely, figures with two or three “Yes” labels were taken as ground
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truth positive, and figures with two or three “No” labels were taken as ground

truth negative. Figures for which there were neither two “Yes” verdicts nor

two “No” verdicts, such as a set of labels “Yes,” “Maybe,” and “Maybe,” were

excluded from the training set. The same procedure was used on the testing

data set.

We find that this protocol is useful for investigation purposes because it

allows a fair comparison of the machine to pathologists. If the only figures in

the data set were those for which all three pathologists agreed, there would

be no fair baseline for the machine’s performance (trivially, each participating

pathologist would perfectly predict all the ground truth labels).

3 Results

Table 1 shows pairwise agreement of our three pathologists, in cases where

both committed to “Yes” or “No” decisions. Statistics of agreement are com-

puted in Table 2. The prevalence index and the bias index express attributes

of agreement that do not affect Cohen’s Kappa [4]. The prevalence index de-

scribes the relative frequency of agreed positives versus agreed negatives. The

bias index compares the frequency of positive/negative disagreements and neg-

ative/positive disagreements.

We find that strong biases exist between pairs of observers. B is much more

likely to reject a figure called mitotic by C or A than to count a figure rejected

by C or A. A measurable but much less significant bias exists between C and

A: C is more likely to reject a figure counted by A than A is likely to reject a

figure counted by C.

In Table 3, we examine how each pathologist’s vote predicted the ground

truth labels in the test set, which were determined by the result of majority

voting. This calculation is intended as a baseline for the binary classifier trained
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by machine learning, which decides “Yes” or “No” for every candidate mitotic

figure. The pathologists had the additional option of saying “Maybe” to a

figure, so their binary classification performance may be considered as a range,

bounded by the performance levels if all “Maybe” decisions were changed to

either “Yes” or “No.”

Observer C’s performance at first looks surprisingly high, but all observers

were advantaged over the machine by contributing a vote to the “majority la-

bel.” Recall from Table 1 that A and B disagreed on 35% of the cases where

they both committed to “Yes” or “No.” In each of these cases, C’s vote actually

defined the majority label. As the tie-breaker in this protocol, it is naturally

expected that he has high agreement with the majority label.

The last line of table 3 shows the machine’s performance. Compared to

A, the machine performs much more strongly on negatives, but not as well on

positives. Compared to B, the machine misclassifies only one more negative

figure, while falling within the bounds of B’s performance on positive figures.

We find this result encouraging, considering several disadvantages of the

machine. One disadvantage is that the machine was confined to looking at a

small box around each mitotic figure, whereas the pathologist could examine

the entire HPF. Another is the lack of a special strategy for telophase figures.

Each blob in a telophase figure is regarded separately (although the second blob

is visible). Features considering the relationship between the two nearby blobs

should improve the performance further.

Although the range of Cohen’s Kappa for pathologists on individual mi-

totic figure recognition is perhaps not surprising, given its range on grade-level

agreement, we were surprised to find strong biases. The biases suggest that

different pathologists interpret grading guidelines differently. We hope that the

development of a computerized mitotic detector may be one step towards the
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establishment of more stable tissue grading.
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Table 1: Pathologist agreement of mitotic figures.
Pathologists Yes/Yes No/Yes Yes/No No/No
A/B 1352 4 789 102
A/C 2705 20 172 83
B/C 1506 756 15 461
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Table 2: Statistics of pathologist agreement of mitotic figures.
Pathologists Cohen’s κ Prevalence Bias
A/B .13 .56 -.35
A/C .44 .88 -.05
B/C .39 .38 .27
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Table 3: Prediction of test figures where two pathologists agreed.
Observer Majority label Observer Lower bound Upper bound

Yes/Maybe/No agreement agreement
A Positive (726) 658 / 65 / 3 90.6% 99.6%

Negative (73) 15 / 36 / 22 30.1% 79.4%
B Positive (726) 394 / 166 / 166 54.3% 77.1%

Negative (73) 0 / 0 / 73 100.0% 100.0%
C Positive (726) 720 / 4 / 2 99.2% 99.7%

Negative (73) 2 / 2 / 69 94.5% 97.3%
Machine Positive (726) 462 / 0 / 264 63.6% 63.6%

Negative (73) 1 / 0 / 72 98.6% 98.6%
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